

PAGE 1 OF 125

VALIDATION AND
VERIFICATION

OF E-MAIL ADDRESSES

FINAL YEAR PROJECT

PRESENTED AS PART OF THE

REQUIREMENT FOR AWARD WITHIN
THE UNDERGRADUATE MODULAR

SCHEME AT

GLOUCESTERSHIRE UNIVERSITY

BY

GLENN TURNER

Course: Computing with Business Computer Systems
Module code: CO303
Student number: s9701050
Student e-mail address: s9701050@glos.ac.uk
Project website: http://final.glennturner.co.uk/
Supervised by: Jon Wise
Start/finish dates: October 2001 – 8th May 2002

PAGE 2 OF 125

Declaration

DECLARATION:-
This dissertation is the product of my own work. I agree that it may be made available
for reference and photocopying at the discretion of the University.

Glenn Turner

Date:

Many thanks to Gyroscope.com in providing test data for this project

PAGE 3 OF 125

Abstract

E-mail addresses are crucial to the Internet community providing a quick, easy, cost

effective means of contacting people to provide information or services. Along with the

World Wide Web (WWW), e-mail is one of the key building blocks of the Internet, and

arguably one of the reasons why the use of the Internet has grown so rapidly.

E-mailing provides the ability to market products or services to existing or potential

customers at a low cost. This means a list of e-mail addresses is often regarded as a

highly prized asset by website administrators. The amount of e-mail addresses in a

company’s database can even increase the company’s value as it indicates the amount of

potential customers it has. As a result many companies place a high degree of

importance to the reliability (correctness) of gathered e-mail addresses.

The value of an e-mail address creates a need to check the ‘correctness’ of e-mail

addresses entering into the company’s databases. Periodic checking of e-mail addresses

in a database would allow removal of addresses that are no longer in use. These unused

addresses increase as people change their e-mail address, often by changing their

internet service provider.

This document investigates a number of methods to find the ‘correctness’ of an e-mail

address, discusses how successful the methods found are likely to be and how feasible it

would be to use them for commercial purposes.

PAGE 4 OF 125

Contents

Declaration.. 2
Abstract... 3
Contents.. 4
List of Figures ... 7
Introduction .. 8

The beginnings of e-mail ... 8
The problems of incorrect email addresses .. 9
Email validation & verification : a possible solution .. 10
Project Aim ... 10
Project Approach .. 11
Project Objectives ... 12
Project Deliverables .. 12
Proposed project timetable.. 12
Advantages of validating and verifying e-mail addresses .. 13
What is validation? .. 14
What is verification? .. 14
Quotes on validation and verification .. 15
Why not just verify? .. 15

Validation.. 16
Approach to validating e-mail addresses .. 16
RFC2822 ... 16
Structure of an e-mail address.. 17

Hostname (Often known as sub-domains) .. 21
Domain ... 21
TLD (Top Level Domain)... 22
Case sensitivity of e-mail addresses.. 22
Length of an e-mail address... 22

Interpreting the RFC 2822 pseudo code specification.. 23
Regular Expressions .. 26
Converting ABNF (Augmented Backus-Naur Form) notation into Regular
Expressions ... 27
Implementation of the program .. 29
Limitations and scope of the validation ... 29
Optional Top Level Domain Checking.. 32
Validation Testing ... 33
Validation Synopsis ... 34

Verification ... 35
The methodology to verify e-mail addresses .. 35
Platform Decision ... 36

Shortlist of Systems with advantages and disadvantages 37
Finding the mail server .. 40

A test program to resolve the MX records... 42
Regular Expressions in Delphi .. 42
Introduction to SMTP communication.. 43

PAGE 5 OF 125

The common e-mail client... 43
The SMTP standard .. 44
Response Codes .. 47
Sequence of commands ... 48
Verification Possibilities .. 48

Method 1... 49
Method 2... 50

EXPN ... 51
A simple SMTP test application .. 53
Ending the session .. 54
Issues with verifying .. 54

Reverse lookups .. 56
The final verification application ... 57

Key Features of the program ... 59
Problems producing the prototype .. 59

Testing .. 62
The Test Data ... 62
Verification Testing ... 62
RCPT Testing ... 63
Speed/Thread Testing... 63
The Test System.. 63
Results... 64

Conclusion .. 67
Process .. 67
Learning .. 70

Bibliography .. 72
Validation.. 72
Verification ... 72
SMTP Security .. 72
History .. 73
e-mail Systems ... 73
Programming and languages .. 73
Internet Standards ... 74
General ... 74

References... 75
Appendix .. 77

The current Top Level Domains (TLDs) (24/2/2002) .. 77
Extracts from RFC2822 .. 78

2.2.2. Structured Header Field Bodies.. 78
3.2.1. Primitive Tokens.. 78
3.2.2. Quoted characters .. 78
3.2.3. Folding white space and comments.. 78
3.2.4. Atom ... 79
3.2.5. Quoted strings ... 79
3.2.6. Miscellaneous tokens.. 79
3.4.1. Addr-spec specification .. 79
4.1. Miscellaneous obsolete tokens .. 80
4.4. Obsolete Addressing... 80

PAGE 6 OF 125

ASP to validate an e-mail address .. 81
e-mail test messages... 85

Test message to !#$%&'*+-/=?^_`{|}~@glennturner.co.uk 85
ASCII code table ... 86
Regular Expression Syntax .. 87
Source code for verification application... 91

Verify.pas .. 91
MXloolup.pas.. 112
Verifyaddr.pas ... 114
StringQueue.pas .. 122

PAGE 7 OF 125

List of Figures

Figure 1: Advantages of validation and verification.. 13
Figure 2: Validation definition ... 15
Figure 3: Verification definition... 15
Figure 4: Common structure of an e-mail address ... 19
Figure 5: Examples of working e-mail addresses.. 19
Figure 6: Examples of less common (but usable) addresses ... 19
Figure 7: Examples of addresses that are now becoming obsolete 19
Figure 8: Raw Message sent successfully to ":-)"@glennturner.co.uk 20
Figure 9: TLD checking in regular expression format .. 32
Figure 10: A selection of valid test data used ... 33
Figure 11: A selection of invalid test data used .. 33
Figure 12: DNS MX results for "hotmail.com".. 40
Figure 13: Application to test lookup of MX records... 41
Figure 14: SMTP common usage... 43
Figure 15: Minimum Implementation of SMTP... 46
Figure 16: SMTP Reply Codes in Numeric Order – RFC2821..................................... 47
Figure 17: An example telnet connection... 52
Figure 18: A SMTP test application ... 53
Figure 19: The verification application running ... 57
Figure 20: The validation tab ... 57
Figure 21: The verification tab... 58
Figure 22: The destination tab ... 58
Figure 23: The SMTP tab .. 58
Figure 24: The status tab ... 58
Figure 25: The Errors tab .. 58
Figure 26: Flowchart for verification threads ... 61
Figure 27: The time taken when different number of threads are running.................... 65
Figure 28: Server responses to verify 250 different e-mail addresses 66
Figure 29: Server responses to verify 250 different e-mail addresses using RCPT 66
Figure 30: E-mail address correctness hierarchy ... 71
Figure 31: The current Top Level Domains... 77
Figure 32: Regular Expression Syntax.. 90

PAGE 8 OF 125

Introduction

The beginnings of e-mail

In late 1971 a computer engineer called Ray Tomlinson used the ARPANET to send

the first e-mail between two Digital PDP-10 computer systems (Campbell, 1998). The e-

mail was sent using a modified version of his own program named SNDMSG.

SNDMSG had originally been designed to allow users to leave messages for each other

on a single computer. It was subsequently modified to make use of a protocol which

allowed files to be copied between machines. When SNDMSG was combined with this

protocol it allowed the transmission of the first e-mail. The @ symbol was chosen to

differentiate between messages for the local machine and outbound messages.

Tomlinson said: "I used the @ sign to indicate that the user was 'at' some other host

rather than being local." (compulit.uta.edu, nd)

It was never envisaged that e-mail would become so popular or used as widely as it is

today. At the time Tomlinson sent the first e-mail only 15 computers were connected to

the network and most people knew everyone using the system. E-mail is now in use

worldwide by approximately 400 million people (software-aus.com.au, 2001) .

PAGE 9 OF 125

The problems of incorrect email addresses

If a telephone or fax number is missing a digit the person will realise this when they try

to use it. Sending a test e-mail can often take days before it is returned with ‘recipient

unknown’ or a similar error. For personal use this is just a inconvenience, but for

commercial use, the accuracy of customer email addresses is an important factor. Should

1% of all customers incorrectly type their email address, this could potentially lead to a

large loss of business.

E-mail addresses become redundant as customers change their ISP. Surveys

have shown that 40% of people using e-mail change there address at least once a year

(Marcus, 2001). Less than a third of those that change their e-mail address notify

retailers or Internet services that rely on there e-mail address. The result is an increasing

number of redundant e-mail addresses in company databases.

In the case of e-mail newsletters the target audience is reduced, and mail server

performance suffers for every incorrect address. This is because the server will make

multiable attempts to send the e-mail over a period of time.

As well as losing customers, incorrect e-mail addresses can also cost companies

time and money trying to find the correct address, and may lead to even customer

dissatisfaction.

For example; an order is placed online with a request for next day delivery, but

with an incorrect e-mail address. The company discovers the item is out of stock and

sends an e-mail to the customer notifying them of the problem (using the incorrect

address).

The next day the customer phones the company trying to find out what has

happened to the order.

PAGE 10 OF 125

Email validation & verification : a possible solution

In the past I have worked with e-mail systems such as sendmail and MS Exchange, and

have been required to diagnose problems with remote mail servers. One of the

techniques used to determine faults is to manually connect to the mail server using a

number of mail protocols. As a result I have gained knowledge of the protocols and

how the servers react. I also manage mailing lists for e-mail newsletters which can

quickly fill with redundant addresses over a period of time. These need to be removed

as the e-mails are returned but this is a time-consuming and tedious job. This lead me to

wonder if it is possible to verify an address before sending the e-mail. I began to

speculate on the type of application that would be required to handle such verification. I

also realised that the resulting application could also be employed to verify e-mail

addresses at the point of entry into a computer system. At the time of commencing this

project I had been unable to find a company that was able to provide such a service.

Project Aim

To establish if it is feasible to produce a software program to validate and verify e-mail

addresses. If this is the case a working program that uses the methodologies discovered

will be implemented. The program will then be tested to check how effective it is likely

to be in a commercial environment.

The difference between validation and verification is explained on page 14

PAGE 11 OF 125

Project Approach

The project will be spilt into two halves; validation and verification. The two types of

checking require two different approaches. Validation of an e-mail address will check

the syntax and requires detailed knowledge of the e-mail address structure. Verification

requires the e-mail address to be checked against another source. I can see a use of

validation in the verification program, for this reason I feel the validation section should

be carried out first. Both validation and verification sections will have there own

conclusions with an overall conclusion at the end of the project. Where ever possible e-

mail standards will be consulted with particular attention paid to standards that are in

common use.

PAGE 12 OF 125

Project Objectives

• Website showing project progress
• Abstract
• Introduction to subject
• Project Approach
• Validation verses Verification
• Define and document e-mail address structure
• Evaluate methods for validating e-mail
• Choose methods
• Implement validating software
• Obtain test data and test software
• Evaluate effectiveness of the validation
• Research DNS, MX RECORD, SMTP systems
• Methodology to verify e-mail addresses
• Produce software to verify e-mail addresses
• Obtain test data and test software
• Evaluate effectiveness of the verification
• Project Evaluation

Project Deliverables

• A full working prototype system for finding e-mail addresses within documents, that

can validate and verify those addresses
• The project document
• Conclusion of the project (within the project document)
• Publish documents on project website (http://final.glennturner.co.uk)

Proposed project timetable
Pre October 2001 General research
4th October 2001 First Project meeting
Late October 2001 Project chosen & website up and running.
January 2002 Validation completed
February 2002 Verification theory documented
April 2002 Verification application working
8th May 2002 Project to be finished and documented

PAGE 13 OF 125

Advantages of validating and verifying e-mail addresses

Figure 1: Advantages of validation and verification

Figure 1 shows a mind map on the advantages of validating and verifying e-mail

addresses. It gives a diagrammatic overview of what could be achieved if the project is

successful.

PAGE 14 OF 125

What is validation?

In computing terms data validation is testing to see if data complies with a set of defined

characteristics. For example if a computer program takes the date of birth from a user it

can validate the date of birth. This may be making sure it is numeric and not a letter or

symbol. For example; If a user was born in 1960 and but types 196o by mistake (the

letter o rather than a zero) then validation can pick this error up. But if the user typed

1860 instead of 1960 validation alone will not pick this error up. The validation process

does not require extra user input to determine that the data is incorrect.

What is verification?

Data verification is to confirm that the data is correct or is likely to be correct. In terms

of data input verification may include asking the operator/user to re-enter the data or

confirm that it is correct. Techniques such as range checking on the data can be used

ensure that the data is likely to be correct. Using the same scenario as the validation

example, the user enters his/her date of birth into to the program. Range checks can be

used to establish if the age is between a predefined range (e.g. 0 to 150). The user may

also be asked to re-enter the data of birth in which case the computer compares the two,

or the entered data is displayed on the screen and the user is asked to confirm if it is

correct.

 The most visible form of verification is re-entry of data or confirmation by the

user but verification can take place without user intervention. For example when a file

is copied between two storage drives verification is used to check consistency between

the source and destination. The source data needn’t be checked because file error

checking can be used on the destination.

PAGE 15 OF 125

Quotes on validation and verification

“Data validation is the process of getting the computer to check to see if the data is valid (sensible in the

context in which it is being used). “

(Bradley, 1995:423)

Figure 2: Validation definition

“Data validation, important though it is, can’t detect all errors…Verification is a means of checking to

see if the data being entered is likely to be correct”

(Bradley, 1995:423)

Figure 3: Verification definition

Why not just verify?

In the case of validating and verifying e-mails addresses verifying can be used on its own

to test for correctness. However, because verifying tends to be more time consuming

than validating it maybe quicker and more efficient (in terms of processing power) to

validate first, before verify and having delays on anomalous addresses.

PAGE 16 OF 125

Validation

Approach to validating e-mail addresses

In order to validate e-mail addresses the structure of the e-mail address needs to be

understood and have an explicit definition for common and possible usage. The

Internet Engineering Task Force is the international body with the task of establishing

open standards for the Internet. It does this through RFCs (Request For Comments)

documents that are published on the Internet itself. Some of the RFCs are standards,

with others used as advice and recommendations (Bradner, 1996). Using the latest RFC

standards the approach is to break e-mail addresses down into manageable parts such as

the local part and domain. If needed these will be further broken down. Once all these

smaller parts are defined and understood they can then be constructed to form

validation for whole e-mail addresses. Definition of the parts and overall validating will

be finalised using regular expression conventions.

See Figure 33: Regular Expression Syntax

RFC2822

There are now thousands of RFCs on many topics regarding the Internet and

surrounding technologies. RFCs can also be superseded by newer specifications. It is

therefore important to select the appropriate RFC before using it to extract the e-mail

address structure. There are a number of web search facilities specifically for searching

RFCs. I used the search engine at http://www.rfc-editor.org/cgi-bin/rfcsearch.pl to

search for any RFCs relating to e-mail systems. This gave a large number of RFCs in the

PAGE 17 OF 125

search results. RFCs are well referenced and I very quickly came across references to

RFC822 (the basis of modern e-mail addressing) and RFC2822 which supersedes

RFC822.

RFC2822 (Resnick, 2001) will be used to define the structure of the e-mail addresses, as

it is the current standard which “specifies a syntax for text messages that are sent between

computer users, within the framework of "electronic mail" messages.”

Structure of an e-mail address

An e-mail address can be defined using the sections below. For common western

languages (e.g. English/American) use, only the following symbols would be used:

@ Compulsory to delimit the user section from the rest of the e-mail address.

. When used on the right hand side of the “@” they delimit domains and their

sub-domains .

_ Underscores are valid within user section (but not at beginnings or ends).

- Hyphens again valid in both domain and user sections (not at beginnings or

ends).

a-z Valid in either upper or lower case.

0-9 Valid (but not valid at the start of some domains – depends on TLD).

PAGE 18 OF 125

() Brackets can be used as comments.

! Bangs can be used as a command to an e-mail server to forward the e-mail to

another server. Some servers will ignore this character others will reject the e-

mail. The e-mail can also be rejected if the ‘other’ e-mail server does not exist or

is not accessible.

[] When used to the right of the “@” symbol brackets can be used to replace the

entire domain with an IP address in the format [xxx.xxx.xxx.xxx] e.g.

[192.168.0.1]

$ % & ' * + - = ? ^ _ ` { | } ~

These symbols can be used to the left of the “@” without any underlining

functions or uses (current standards). They are simply treated as ‘normal’

characters.

PAGE 19 OF 125

Figure 4: Common structure of an e-mail address

user@hostname.domain.tld

Figure 5: Examples of working e-mail addresses

sales@store.gyroscope.com
sales@gyroscope.com

firstname.lastname@gyroscope.com

Figure 6: Examples of less common (but usable) addresses

 “:-)” @gyroscope.com

!#$%&'*+-/=?^_`{|}~@gyroscope.com

Figure 7: Examples of addresses that are now becoming obsolete

sales@[213.171.193.18]

sales(comment)@gyroscope.com
sales(test)!gyroscope@gyroscope.com

PAGE 20 OF 125

Received: From pcow004o.blueyonder.co.uk [195.188.53.119] by
mailserver02.fasthosts.co.uk
 (Matrix SMTP Mail Server v(1.3)) ID=CDBAA517-829E-40F2-A592-
235046670B34 ; Mon, 29 Apr 2002 15:04:59 +0000
Received: from mail pickup service by blueyonder.co.uk with
Microsoft SMTPSVC;
 Mon, 29 Apr 2002 15:08:53 +0100
Content-Class: urn:content-classes:message
From: <glennturner@blueyonder.co.uk>
To: <":-)"@glennturner.co.uk>
Subject: test
Date: Mon, 29 Apr 2002 15:08:53 +0100
Message-ID: <5ee201c1ef87$64a51b50$7735bcc3@blueyonder.net>
MIME-Version: 1.0
Content-Type: text/plain;
 charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Mailer: Microsoft CDO for Windows 2000
Thread-Index: AcHvh2SlV6EOCltjEdaQvQCQJ9GOQA==
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2014.211
X-RCPT-TO: <":-)"@glennturner.co.uk>

Figure 8: Raw Message sent successfully to ":-)"@glennturner.co.uk

To prove these e-mail addresses work test messages were sent to them. Figure 8
Shows the raw message sent to “:-)”@glennturner.co.uk

PAGE 21 OF 125

User

The user section of an e-mail address is also know as the local part and is only used

towards the end of the e-mail delivery process. Traditionally, the user section of the

address would define a single user on a computer system. All users of the same domain

would normally be physically local to the computer system. However, with the use of

POP boxes and the ISP service model this is no longer the case. Users can ‘dial in’ from

anywhere in the world to collect their e-mail. E-mails can also be forwarded or alias

another e-mail address. So sales@gyroscope.com may be forwarded to

glenn@gyroscopes.co.uk . This now makes identifying someone’s geographic location

from their e-mail address almost impossible.

Hostname (Often known as sub-domains)

The hostname is prepended onto the domain. Historically each sub-domain would have

been another computer system (often a single machine). Today it is more likely to be

created/used on the same machine as its ‘parent domain’ for a different website or

service. Note: the one of the most used sub-domains is www which is a sub-domain in

its own right.

Domain

The domain is a unique name containing sections that are separated with a single dot.

Each section can have a maximum of 63 characters, with a the whole domain having a

maximum length of 255 characters. The domain resolves to an IP address. Using the

example “www.gyroscope.com” “com” is the TLD (Top Level Domain) with

“gyroscope” being a sub domain of “com”. “www” is a sub domain of

“gyroscope.com”. It has recently become common to call the first sub domain of the

TLD “the domain” with any sub domains known as “sub domains”.

PAGE 22 OF 125

TLD (Top Level Domain)

TLD’s are the highest level of domain and the most significant. All countries have their

own top level domain name (244 in total), plus there are other non-geographic domains

such as com and org. Most TLDs are controlled by national organisations but a few are

controlled by a multiple number of international bodies in cases such as com , net and

org domains.

See Figure 32 for a full list of Top level domains

Case sensitivity of e-mail addresses

The growth of e-mail systems were popularised by UNIX based operating systems

(Marshall, nd). E-mail systems inherited case sensitivity like that used on UNIX file

systems. This sensitivity only applied to the user part of the address because everything

after is governed by the DNS system which is not case sensitive. The case sensitivity on

modern mail systems can be set independently of the operating system. So UNIX mail

systems maybe case insensitive. It is in effect down to each server that is receiving and

sending e-mails. Most systems at present are using case insensitivity. The latest SMTP

RFC (RFC 2821) discourages case sensitive systems due to interoperability (Klensin,

2001).

Length of an e-mail address

In RFC1123 (section 6.1.3.5) its says:

“The DNS defines domain name syntax very generally – string of labels each containing up to
63 8-bit octets, separated by dots, and with a maximum total of 255 octets.”

 (RFC1123, 1989:79)

PAGE 23 OF 125

Interpreting the RFC 2822 pseudo code specification

The RFC2822 specification defines the structure of an e-mail address predominantly for

SMTP but the structures it defines are used by other mail systems. Most e-mails sent

over the Internet are at some point sent via SMTP for part of the delivery. Therefore

the SMTP messaging standards are the most applicable standards to be used to define e-

mail address validation The specification in RFC2822 has been written in a modular

manner that allows easy understanding of elements but has to be ‘expanded’ in order for

it to be converted to a programming language. The syntactic notation used in RFC2822

is written in Augmented Backus-Naur Form (ABNF) notation which is specified in

RFC2234 (Crocker, 1997) . The following steps show how I got to the validation

specification.

1. From 3.4.1. “Addr-spec specification” . This is the highest form of

‘description’ of an e-mail in the specification. It defines that a e-mail address
has a “local-part”, at the beginning, an “@” in the centre and the “domain”
at the end.

addr-spec = local-part "@" domain

2. RFC2822 has a specification for the “local-part” which is:

local-part = dot-atom / quoted-string / obs-local-part

 Using this I made substitution to expand the definition. Hence the result:

(dot-atom / quoted-string / obs-local-part) "@" domain

PAGE 24 OF 125

3. Using the “domain” definition:

 domain = dot-atom / domain-literal / obs-domain

I made a similar substitution on the domain section. The result:

(dot-atom / quoted-string / obs-local-part) "@" (dot-atom / domain-
literal / obs-domain)

4. “obs-domain” expands to:

 ([CFWS] 1*atext [CFWS] *("." [CFWS] 1*atext [CFWS]))

which is obsolete so this can be removed (denoted by the “obs-“). Hence the
definition:

(dot-atom / quoted-string / obs-local-part) "@" (dot-atom / domain-
literal)

5. “obs-local-part” is also obsolete so this can be removed. Hence:

(dot-atom / quoted-string) "@" (dot-atom / domain-literal)

6. “dot-atom” is substituted/expanded

(([CFWS] dot-atom-text [CFWS]) / quoted-string) "@" (([CFWS] dot-
atom-text [CFWS]) / domain-literal)

7. “quoted-string” is substituted/expanded

(([CFWS] dot-atom-text [CFWS]) / ([CFWS] DQUOTE *([FWS] qcontent)
[FWS] DQUOTE [CFWS])) "@" (([CFWS] dot-atom-text [CFWS]) / domain-
literal)

8. “domain-literal” is substituted/expanded

(([CFWS] dot-atom-text [CFWS]) / ([CFWS] DQUOTE *([FWS] qcontent)
[FWS] DQUOTE [CFWS])) "@" (([CFWS] dot-atom-text [CFWS]) / [CFWS]
"[" *([FWS] dcontent) [FWS] "]" [CFWS])

PAGE 25 OF 125

9. White spaces are removed and any unnecessary brackets.

(dot-atom-text / (DQUOTE *(qcontent) DQUOTE)) "@" dot-atom-text /
"[" *(dcontent) "]")

10. dot-atom-text is substituted

((1*atext *("." 1*atext)) / (DQUOTE *(qcontent) DQUOTE)) "@" (
1*atext *("." 1*atext)) / "[" *(dcontent) "]")

11. qcontent is substituted

((1*atext *("." 1*atext)) / (DQUOTE *(qtext / quoted-pair) DQUOTE))
"@" (1*atext *("." 1*atext)) / "[" *(dcontent) "]")

12. dcontent is substituted

((1*atext *("." 1*atext)) / (DQUOTE *(qtext / quoted-pair) DQUOTE))
"@" (1*atext *("." 1*atext)) / "[" *(dtext / quoted-pair) "]")

13. quoted-pair = ("\" text) / obs-qp
obs-qp is now obsolete so quoted-pair is substituted with ("\" text)

((1*atext *("." 1*atext)) / (DQUOTE *(qtext / ("\" text)) DQUOTE))
"@" (1*atext *("." 1*atext)) / "[" *(dtext / ("\" text)) "]")

14. Changes to the domain-literal addressing

See “Limitations and scope of the validation“ for the reasons why.

[0-255.0-255.0-255.0-255]

Hence:

((1*atext *("." 1*atext)) / (DQUOTE *(qtext / ("\" text)) DQUOTE))
"@" (1*atext *("." 1*atext)) / ("[" 0-255 "." 0-255 "." 0-255 "."
0-255 "]"))

PAGE 26 OF 125

15. The following are keys for above definition

DQUOT = %d34

Atext = ALPHA / DIGIT / ; Any character except controls,
 "!" / "#" / ; SP, and specials.
 "$" / "%" / ; Used for atoms
 "&" / "'" /
 "*" / "+" /
 "-" / "/" /
 "=" / "?" /
 "^" / "_" /
 "`" / "{" /
 "|" / "}" /
 "~"

qtext = NO-WS-CTL / ; Non white space controls
 %d33 / ; The rest of the US-ASCII
 %d35-91 / ; characters not including "\"
 %d93-126 ; or the quote character

dtext = NO-WS-CTL / ; Non white space controls
 %d33-90 / ; The rest of the US-ASCII
 %d94-126 ; characters not including "[",
 ; "]", or "\"

NO-WS-CTL = %d1-8 / ; US-ASCII control characters
 %d11 / ; that do not include the
 %d12 / ; carriage return, line feed,
 %d14-31 / ; and white space characters
 %d127

text = %d1-9 / ; Characters excluding CR and LF
 %d11 /
 %d12 /
 %d14-127 /
 obs-text

Regular Expressions

The ABNF format used in the RFC is descriptive but needs to be converted into

something that a computer can understand. An interpreter could be written for ABNF

but this would be a significant amount of work and beyond the scope of this project.

The ABNF to validate an e-mail address could be converted directly to code but the

amount of code would be considerable. Instead I have chosen to implement the ABNF

into regular expressions which can be executed in an application. Regular expressions

have been designed to manipulate and validate string data. One of the main reasons why

PAGE 27 OF 125

I have chosen to use regular expressions is that it is portable between many languages

and is not dependent on any one operating system (Friedl, 1998).

“At a low level, a regular expression describes a chunk of text. You might use it to verify a user’s input,

or perhaps to sift through large amounts of data. On a higher level, regular expressions allow you to

master your data. Control it. Put it to work for you. To master regular expressions is to master your

data.”

(Friedl, 1999:XV)

Regular expressions were invented by Professor Stephen Kleene in the mid 1950s to

manipulate "regular sets". UNIX operating systems use regular expressions widely to

manipulate and validate string data (Howe, 1997) and have become popular for web

page scripting.

Converting ABNF (Augmented Backus-Naur Form)
notation into Regular Expressions

Using the RFC2822 ABNF I have define the parts of the e-mail address structure and
combined the whole structure. In this next section the ABNF is ported to regular
expressions it needs to be converted in to something a computer can understand.

ABNF

[" 0-255 "." 0-255 "." 0-255 "." 0-255 "]"

Regular expression

IPNo="(([1-2][0-4][\d])|([1-2][5][0-5])|([1-9][0-8])|([\d]))"
RegIPaddr = "\[" & IPNo & "(\." & IPNo & "){3}\]"

PAGE 28 OF 125

ABNF

((1*atext *("." 1*atext))

Regular expression

([\w!#$%&*+-/=?^_`{|}~'])+([\.]([\w!#$%&*+-/=?^_`{|}~'])+)*

ABNF

(DQUOTE *(qtext / ("\" text)

Regular expression

([\x22]([\w]|([\\\][\011\014\127\012\001\002\003\004\005\006\007\008
\009]))*[\x22])

The regular expression that handles the domain i.e.

([\w!#$%&*+-/=?^_`{|}~'])+([\.]([\w!#$%&*+-/=?^_`{|}~'])+)*

does not take into consideration of the domain name system (Mockapetris, 1983). The
expression can be improved by adding checking for that the domain structure is valid.
It is known that all

“Note that while upper and lower case letters are allowed in domain names no significance is attached to
the case. That is, two names with the same spelling but different case are to be treated as if identical.

The labels must follow the rules for ARPANET host names. They must start with a letter, end with
a letter or digit, and have as interior characters only letters, digits, and hyphen. There are also some
restrictions on the length. Labels must be 63 characters or less.”

(RFC883, 1983:56)

The updated regular expression

((([a-zA-Z0-9\-]{1,62})+[\.])+[a-zA-Z0-9\-]*)

PAGE 29 OF 125

The result is as follows (regular expression):

IPNo ="(([1-2][0-4][\d])|([1-2][5][0-5])|([1-9][0-8])|([\d]))"
RegIPaddr = "\[" & IPNo & "(\." & IPNo & "){3}\]"

RegLocal =
"([\w!#$%&*+-/=?^_`{|}~'])+([\.]([\w!#$%&*+-/=?^_`{|}~'])+)*"

RegQstring =
"([\""]([\w]|([\\\][\011\014-
\127\012\001\002\003\004\005\006\007\008\009]))*[\""])"

RegDomain = “((([\w][\w\d\-]{1,62})+[\.])+[\w_\-]*)”

emailRegExp =
"((" & RegLocal & "|" & RegQstring & ")\@
(" & RegDomain & "|" & RegIPaddr & "))"

Implementation of the program

With the regular expression ‘containing’ most of the validation work a language needed

to be chosen to implement the application. Only a small amount of code needs to be

created so I did not feel the validation application needed to use the same language as

the verification application. I wanted a language that could quickly implement the

regular expression and could be used on the project website. I chose ASPs (Active

Server Pages) because they allow the validation program to be used on the project web

site.

Limitations and scope of the validation

Although using regular expressions has increased the portability of the program to allow

validation in ASPs (VBscript), Perl, Shell scripts, PHP, Visual Basic, Python, JSP,

Javascript, Java and even Delphi (with the aid of a 3rd party module). Many of the above

languages do not support recursive calls in regular expressions which is needed in order

to meet the full RFC standards (RFC 2822). Recursive calls can be included into the

regular expressions but at the time of writing support could only be found in Python

and newer versions of Perl and Shell scripts.

PAGE 30 OF 125

The following standards are missing from the validation as implemented:

• Comments in e-mail addresses

RFC 2822 defines how comments can be added to the local-part of the e-mail

address. A comment starts with “(“ and ends with “)” and allows a number of

characters to be placed into the comment. An unlimited number of comments

are allowed and comments can be placed within comments providing the

corresponding correct number of open and close brackets are used. This type of

recursive checking cannot be carried out solely in all versions of regular

expressions. A decision was made to leave this because of that reason.

• RFC 2822 4.4. Obsolete Addressing

Section 4.4 of RFC 2822 deals with obsolete addressing. It is worth noting that

there are a couple of rules that are now obsolete that apply to a single e-mail

address. In the past addresses were allowed to have a “route portion” before

being enclosed in "<" and ">". This was used to route e-mail via a number of

servers. This is now ignored. Carriage returns with spaces were allowed between

the periods in both the local-part and domain. I chose not to implement these as

support for these features are being phased out.

• Some domain-literal addressing missing “[something]”

The domain-literal was finally expanded to

"[" *(dtext / ("\" text)) "]"

which allows a wide range of characters to be placed in the brackets that the

mail server needs to interpret. Looking at the “4.1.3 Address Literals” section in

RFC 2821 the contents within the brackets have been left open either for local

interpretation (e.g. a CNAME in the DNS) or as an IP address or for a future

PAGE 31 OF 125

use of the IPv6 addresses. RFC822 (Crocker, 1982) gives a better explanation

and goes on to strongly discourage use of the domain literals. Using domain-

literals effectively undermines the DNS by simply not using the DNS system.

“Note:
 THE USE OF DOMAIN-LITERALS IS STRONGLY DISCOURAGED. It is
permitted only as a means of bypassing temporary system limitations, such as name tables
which are not complete.”

 (RFC822, 1982:30)

Because of this I have decided to remove most of the flexibility from domain-

literal specification by only allowing an IPv4 address format

• IPv6

The current domain-literal specification would allow the use of the IPv6 address

format. I chose to only implement IPv4 because the IPv6 roll out is still in it

early stages.

The website at http://www.ipv6.org/ maintains a list of servers connected to

the Internet (all be it possibly not a complete list) (ipv6.org, 2001)

PAGE 32 OF 125

Optional Top Level Domain Checking

The current regular expression should work very well but I have thought of another
technique to reduce the number of incorrect e-mail addresses. All the TLDs are known
so a check can be created to validate the TLD against a known list. Figure 9 shows the
complied list of TLDs in regular expression format. I have included this check as an
option in the final validation application. I’ve done this because more TLDs are
currently being added to the domain name system. When the new TLDs become
available they will need to be added to the expression, which may cause administrative
problems.

It should also be noted that TLD checking maybe conceived as validation or verification. I personally
consider it as a borderline case.

Figure 9 was complied from the following reputable sources

The World Wide Alliance of Top Level Domain-names list of county domains
http://www.wwtld.org/member_list/countrycodesort0917.php

A RFC on “Domain Name System Structure and Delegation”
http://www.isi.edu/in-notes/rfc1591.txt

ICANNs webpage on “SEVEN NEW TLD PROPOSALS SELECTED FOR
INTRODUCTION” http://www.icann.org/tlds/

(ac|ad|ae|aero|af|ag|ai|al|am|an|ao|aq|ar|arpa|as|at|au|aw|az|ba|bb|
bd|be|bf|bg|bh|bi|biz|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|c
g|ch|ci|ck|cl|cm|cn|co|com|cr|cu|cv|cx|cy|cz|de|dj|dk|dm|do|dz|ec|ed
u|ee|eg|eh|er|es|et|fi|fj|fk|fm|fo|fr|fx|ga|gb|gd|ge|gf|gh|gi|gl|gm|
gov|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|in|info|in
t|io|iq|ir|is|it|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|
li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|mg|mh|mil|mk|ml|mm|mn|mo|mp|mq|mr|m
s|mt|mu|museum|mv|mw|mx|my|mz|na|name|nc|ne|net|nf|ng|ni|nl|no|np|nr
|nu|nz|om|org|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|pro|pt|pw|py|qa|re|ro|ru
|rw|sa|sb|sc|sd|se|sg|sh|si|sj|sk|sl|sm|sn|so|sr|st|sv|sy|sz|tc|td|t
f|tg|th|tj|tk|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|um|us|uy|uz|va|vc|
ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)

Figure 9: TLD checking in regular expression format

PAGE 33 OF 125

 Validation Testing

The e-mail address Description of test Expect
Result

user@test.com Simple address Valid
Firstname.surname@test.com Address with dot somewhere

before @
Valid

sales@test.co.uk Address with two sub domains Valid
sales@thisis.test.co.uk Address with three sub domains Valid
-@test.co.uk Address with hyphen in user Valid
user@te-st.co.uk Address with hyphen in domain Valid
Us_er@test.co.uk Address with underscore in user Valid
sales..@test.co.uk Address with two dots in user Valid
“test”@test.co.uk Address with user in quotes Valid
test@[1.1.1.1] Address with IP address Valid
“:-)”@glennturner.co.uk Address with a quoted smiley Valid
!#$%&'*+-
/=?^_`{|}~@glennturner.co.uk

Address with a number of symbols
for user

Valid

s9701050@[193.61.84.34] Address with IP address after @ Valid

Figure 10: A selection of valid test data used

The e-mail address Description of test Expect

Result
@test.com Without anything before @ Invalid
This.user@ Without anything after @ Invalid
.@test.com Address with just dot before @ Invalid
Name.@test.com Address with letters, then dot, then @ Invalid
sales@com Address with no sub domain Invalid
User@te_st.co.uk Address with underscore in domain Invalid
test@test[1.1.1.1] Address with confused IP address Invalid
s9701050@[256.61.84.34] Address with confused IP address Invalid

Figure 11: A selection of invalid test data used

PAGE 34 OF 125

Validation Synopsis

I would classify the validation program as a success. It does everything I have set out to

do. The RFC was more complicated than I had expected because there are many

features an e-mail address can have which are rarely used, such as quotations. A few

parts of the RFC have been missed such as the ability to handle Comments in e-mail

addresses. Whenever such parts have been missing they have been documented so they

can be included at a later date, if required.

 The program has succeeded in successfully recognising valid and invalid test

data that was used to check the syntax in the application. One surprising result was the

ability of the validation application to pick out an e-mail address from surrounding text.

For example, if an e-mail was placed in a sentence the validation application can

highlight it.

 Implementing such validation when an e-mail address enters into a computer

system will reduce the amount of incorrect addresses in the system. This clearly is

beneficial. The ability to pick out address has been used before but until now I have

been unaware of its use. MS Word, Outlook and Excel (2002 versions) all use automatic

hyper-linking. When an e-mail address is typed into a document it is automatically

recognised and turned into a hyperlink.

PAGE 35 OF 125

Verification

The methodology to verify e-mail addresses

The most effective way an e-mail address can be verified is to check it against the server

that administrates the e-mail address (the mail server). The first task is to establish a way

to find the mail server from the e-mail address. This should be quite easy to do through

the DNS system as the mail servers themselves do this on a regular basis to contact one

another. Once the address of the mail server is found, contact can be made with the

server.

The easiest publicly accessible way to communicate with the mail server is via

SMTP. To find out if this protocol can be used to verify an e-mail address, the protocol

needs to be checked to see if it is capable of carrying out this function. If it is capable of

doing this, the relevant information must be extracted from the standards to form the

basis of the verification. The theory can then be tested by creating a prototype

application although I may create simple applications throughout the development to

test certain aspects so to avoid complications with others parts of the software.

Outline methodology

• Chose application platform
• Find a way to obtain the mail server from the e-mail address
• Check that the SMTP standards allow verification
• Extract information from standards to allow creation of a prototype application
• Build verification application
• Chose test data
• Run tests
• Discuss results

PAGE 36 OF 125

Platform Decision

The platform which I will use to develop and test the application needs to be known

prior to designing the software, so the limitations can be worked around and be able to

utilize its features. The following criteria are those that have been chosen because of

importance.

• Portability + Availability

For my own personnel use I intend to leave my options open to allow a move to

Linux platform at a future date. It would be useful to choose a language that will

work across Windows and Linux systems. If I chose to release the final

application as freeware then this would also maximise the amount of people that

could use the software by releasing the software on both platforms at once.

• Productivity

While creating the application it will be beneficial to resolve problems with the

design of the application and protocols rather than struggling with programming

language. In order for the time scales to be met a platform must be chosen that

allows good productivity when creating an application that will interact with the

Internet. A language with good Internet components is therefore a high priority.

• Performance

The final verification application could verify one e-mail address at a time,

however I do foresee a need use to check entire lists of addresses or even a

database. In this case speed will be an issue so an application that can handle

more than one address being verified at a time will reduce the wait dramatically.

PAGE 37 OF 125

Shortlist of Systems with advantages and disadvantages

• Visual Basic

I’ve had I a lot of previous experience with Visual Basic. I feel confident with

the language and it has some great Internet components that would simplify

creating the application(s). From experience the applications produced are

slower than its rivals from Borland because Visual Basic applications are semi-

complied. This often requires a number of DLLs to be carried around with

them. Visual Basic applications are non-portable, only running on resent

Windows operating systems.

• Borland C++ builder

C++ builder has now become portable between Windows and Linux systems.

An application can be created on either system and converted to the other by

simply copying across the source files and re-compiling. The registry is one of

the few areas that can cause problems when converting. C++ builder is fast and

has many components to aid development of Internet applications.

Unfortunately I don’t have any experience of C++ builder despite using a few

variations of C++. I’m always happy about learning a new language but because

of the time restrictions and the fact of the Delphi/Kylix option this came a very

close runner up. Regular expressions are not included in the libraries.

PAGE 38 OF 125

• ASPs (Active Server Pages)

After just spending a year working with ASPs (VB script) I gave some

consideration to using them for the verification application. They are good for

working with databases, web pages and sending e-mails, but lack many of the

Internet components compared to Visual Basic, Delphi/Kylix or C++ builder.

In particular they can’t connect to a customised socket, fetch other web pages or

make a telnet connection without obtaining 3rd party add-ins or building your

own components. Spawning other threads is also quite complex and unreliable.

It would be easy for people to use over the web but few would be able to get it

running locally unless they had there own web server running. Basic regular

expressions are supported. Screen ouput is provided through web pages e.g.

HTML, XML.

• Perl

Very portable across a wide range of systems including Windows and Linux.

There are many examples scripts available for this language with a bias to the

Internet. It is also a fast interpreted language and has very good support for

Internet applications, which include being able to connect using sockets, telnet

and sending e-mails. Cross-platform versions tend not to have GUI interfaces.

Regular expressions are supported.

PAGE 39 OF 125

• Borland Delphi/Kylix

Pascal was the first language that I leant and is one of my favorite languages.

Delphi implements an object oriented version of Pascal, with Kylix simply being

a Linux version of Delphi. Delphi and C++ builder share the same complier

which it is quite unique in being able to compile two different languages. The

Delphi IDE is nearly identical to C++ builders and it shares the ability to be fast

and have great components to aid development of Internet applications.

Unfortunately neither Delphi/Kylix nor C++ builder have regular expression

built in.

• Java

Like Perl Java is very portable, however in the latest versions of Windows and

IE support has been removed. The java engine now needs to be downloaded

and installed before java can be used on a windows system. Like Perl it has good

socket support and general Internet components. A GUI development

environment would probably need to be chosen to aid the development speed.

Regular expressions are supported.

ASPs and Perl were ruled out because most people are unlikely to be able to run them

locally. Visual Basic was discarded because of a lack of portability leaving Java, C++

builder and Delphi/Kylix. C++ builder and Delphi/Kylix are identical apart from the

language and because I prefer Pascal over C++ I chose Delphi. Leaving Java or Delphi

which was a tough choice but I finally chose Delphi because of the built in GUI

developer. A search on the web found a number of 3rd party regular expression

components for Delphi/Kylix. Without these it would have been a great disadvantage.

PAGE 40 OF 125

Finding the mail server

The first task is to find the mail server from the e-mail address. Anything after the “@”

is the domain. A DNS query can be created to find the IP address of the mail server(s)

for that particular domain. The mail server maybe the same server as the DNS server or

it may be in a different country with no particular relation to the DNS server apart from

the domain itself.

Using the web tools at http://www.demon.net/external/ any domain can be queried

and the results viewed on a web page. The figure below shows the MX record results

(mail exchangers) for the domain “hotmail.com” (the mail servers are on the right of

each line). There maybe more than one machine accepting e-mail for any given e-mail

address. But they always form a ‘system’ and an e-mail could go to any one of them. In

the case of “hotmail.com” e-mail accounts there are 14 mail servers.

hotmail.com mail is handled (pri=5) by mx07.hotmail.com
hotmail.com mail is handled (pri=5) by mx08.hotmail.com
hotmail.com mail is handled (pri=5) by mx09.hotmail.com
hotmail.com mail is handled (pri=5) by mx10.hotmail.com
hotmail.com mail is handled (pri=5) by mx11.hotmail.com
hotmail.com mail is handled (pri=5) by mx12.hotmail.com
hotmail.com mail is handled (pri=5) by mx13.hotmail.com
hotmail.com mail is handled (pri=5) by mx14.hotmail.com
hotmail.com mail is handled (pri=5) by mx15.hotmail.com
hotmail.com mail is handled (pri=5) by mx01.hotmail.com
hotmail.com mail is handled (pri=5) by mx02.hotmail.com
hotmail.com mail is handled (pri=5) by mx04.hotmail.com
hotmail.com mail is handled (pri=5) by mx05.hotmail.com
hotmail.com mail is handled (pri=5) by mx06.hotmail.com

Figure 12: DNS MX results for "hotmail.com"

Notice that the list is in a sequence but does start at any particular number. The hotmail

DNS in fact changes the server that is at the top for every query. It makes sense that the

hotmail DNS query results are rotated to ensure the load is evenly balanced. Normally

PAGE 41 OF 125

another mail system wanting to commutate with the hotmail mail servers would pick a

mail server with the highest priority rating. If two or more servers with the same priority

are listed the first server is used. In Figure 12 the “mx07.hotmail.com” server would be

used.

Figure 13: Application to test lookup of MX records

PAGE 42 OF 125

A test program to resolve the MX records

Using Borland Delphi 6 a simple test application was written to gain familiarity of the

Borland DNS components and make sure that the MX resolver part of the final

verification application could be integrated smoothly. Using the Borland

“TIdDNSResolver” Internet component finding the MX records was simple, only

requiring minimal programming. Figure 13 shows the application running with the

results (left side), chosen domain, maximum timeout and the chosen DNS server to

perform the query. In this case the local DNS server was “192.168.0.99”.

The application was then improved by creating a single object that fetched the MX

servers and reported this back as a string. This removed any unnecessary output and

allowed the object to be easily used for any future applications.

Regular Expressions in Delphi

The usefulness of regular expressions particularly the ability to find e-mail addresses in

text without much programming effort was made apparent with the validation

application. Delphi does not support regular expressions without the use of 3rd party

tools. So before continuing much further I wanted to find a solution to this problem.

Andrey Sorokin of Russia has developed a free component for Delphi that provides

regular expressions (Sorokin, 2001). The code itself has been ported from Henry

Spencer’s C source into Object Pascal. The speed of the regular expressions are

particularly impressive. As with the Borland DNS components a small test application

was created to familiarise myself.

PAGE 43 OF 125

Introduction to SMTP communication

SMTP communication can be used across the Intranet, or in a LAN or WAN

environment utilizing a TCP/IP based protocol. During an SMTP communication

process two systems talk to one another, the sender is known as the ‘SMTP client’ and

receiver known as the ‘SMTP server’. Delivery of messages can be made to a number of

addresses but communication can only occur between two systems for each connection.

SMTP servers allow multiple simultaneous connections to increase the availability to

accept and send mail. Multiple messages from a single server destined for, or via, a

particular server would normally be sent through a single connection in sequence. Mail

can be passed to its final destination via a relay or gateway which separates networks or

domains. Most mail servers can also act as mail forwarders but normally this is disabled

when not required.

Figure 14: SMTP common usage

The common e-mail client

Assuming the most common set-up of Internet access connection is via either ISDN,

modem, xDSL or Cable modem. A dynamic IP address is given for use while connected

to the Internet from a ‘pool’ of addresses. This means that the IP address will change

after a relatively short period of time or between ‘dial-ins’. If an e-mail is sent with the

reply address resolving to a dynamic IP address there is a very high chance that the IP

PAGE 44 OF 125

address will be different when the recipient replies to the e-mail. As a result it is

impractical to receive or send e-mail directly from an Internet account without having a

static IP address or 3rd party e-mail service.

There is one exception to this problem

The Dynamic DNS service allows you to alias a dynamic IP address to a static

hostname, allowing your computer to be more easily accessed from various locations on

the Internet.

It is envisaged that the verification application can communicate with the SMTP server

via a telnet connection, which could be easily achieved using a component provided by

Delphi. However the commands of the SMTP/telnet connection and the sequence they

should be in are yet to be discovered.

The SMTP standard

RFC 2821 is the current standard for SMTP. In order to verify an address we only need

a subset of the commands used for sending an e-mail. Early on in the reading of the

standard it became clear that there are only 8 commands that are compulsory for any

SMTP server to recognise. It seemed appropriate to get a brief understanding of these

compulsory commands to make a decision on which of these commands would need to

be used by the verification application. The table below shows the minimum commands

that must be supported to allow SMTP to work. They are required by all SMTP servers.

PAGE 45 OF 125

Command RFC2821
Section

Description

“EHLO”
or
“HELO”

4.1.1.1 These two commands are used to identify the client to the

SMTP server and must be the first command used. “EHLO”

supersedes “HELO” but both are still supported. Both

commands are case insensitive. In both cases the command is

given then a space followed by the domain of the client. Finally

a carriage return and line feed is given.

e.g. “Helo test.com

”

“MAIL” 4.1.1.2 Used to start a mail transaction. Although the verification

application will not be sending an e-mail this command must

be used in order to be able to give the “RCPT”, “VRFY” or

“EXPN” commands. This command notifies the SMTP server

where the e-mail is coming from (what the from address of the

e-mail will be). An example command is “MAIL

FROM:<user@test.com>”

“RCPT” 4.1.1.3 Short for recipient. This defines where and ultimately who the

e-mail would be going to. However in the case of the

verification application the response from this command can

be used to verify an address. An example of this command

would be: “RCPT TO:<user@email2test.com>”

“DATA” 4.1.1.4 This command sends the body, title and generally all

information about the e-mail. The command parameters are

quite complex. The verification application does not need to

send this command because it will never send an e-mail.

PAGE 46 OF 125

“RSET” 4.1.1.5 This command aborts the current message, resetting the SMTP

communication back to the point after the “HELO” or

“EHLO” command. This command maybe useful if wanting to

attempt a number of checks whether they are different e-mail

addresses or different checks on the same address

“NOOP” 4.1.1.9 It stands for no operation. It is a test command that requests

the server to return an OK response.

“QUIT” 4.1.1.10 The quit command can be issued at any time. Once a response

is given the server will close the connection.

“VRFY” 4.1.1.6 As RFC2821 says “This command asks the receiver to confirm

that the argument identifies a user or mailbox”.

 Figure 15: Minimum Implementation of SMTP

After reading though the RFC 2821 standard it became clear that the “NOOP”

command would not be required in the verification application because this was simply

a test command to check that the server is responding. Likewise the “DATA” command

should not be used because this is only needed to send an e-mail. A key feature of

SMTP is the fact that after any command is given a response is given back from the

SMTP server to indicate the server status of how successful the operation was. It is the

response from the server that will be used to verify an e-mail address. A complete e-mail

will not be sent, instead the application will terminate the session to the server,

following the verification step.

PAGE 47 OF 125

211 System status, or system help reply
214 Help message

(Information on how to use the receiver or the meaning of a
particular non-standard command; this reply is useful only
to the human user)

220 <domain> Service ready
221 <domain> Service closing transmission channel
250 Requested mail action okay, completed
251 User not local; will forward to <forward-path>(See section 3.4)
252 Cannot VRFY user, but will accept message and attempt delivery
354 Start mail input; end with <CRLF>.<CRLF>
421 <domain> Service not available, closing transmission channel

(This may be a reply to any command if the service knows it must shut down)
450 Requested mail action not taken: mailbox unavailable (e.g., mailbox busy)
451 Requested action aborted: local error in processing
452 Requested action not taken: insufficient system storage
500 Syntax error, command unrecognized

 (This may include errors such as command line too long)
501 Syntax error in parameters or arguments
502 Command not implemented (see section 4.2.4)
503 Bad sequence of commands
504 Command parameter not implemented
550 Requested action not taken: mailbox unavailable

(e.g., mailbox not found, no access, or command rejected for policy reasons)
551 User not local; please try <forward-path> (See section 3.4)
552 Requested mail action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed

 (e.g., mailbox syntax incorrect)
554 Transaction failed

(Or, in the case of a connection-opening response, "No SMTP service here")
 (RFC2821, 2001:45)

Figure 16: SMTP Reply Codes in Numeric Order – RFC2821

Response Codes
SMTP responses are given as a three digit number followed by a space and a textual

explanation. The text explanation varies from server to server but the three digit

number is standardised. The three digit number is standardised for all responses to all

the commands. The first digit shows the overall result. One is reserved for extended

SMTP. Two means a success, three means the action is pending, four means there was a

temporary error and five there was a permanent error. The second and third digits of

the number classify and define the error. A list of common response codes are in

Figure 16.

PAGE 48 OF 125

Sequence of commands

Section 4.1.4 of RFC2821 defines how the order of commands should be given.

The first command should be either “HELO” or “EHLO” followed by the clients host

name. This maybe checked by the server against the IP address that the client is using,

so it is important that the application can customise this property. It does recommend

that “VRFY” can be used without any other commands but this is only a

recommendation and may not be supported by all servers. Once the ‘session’ has started

by using “HELO” or “EHLO” then any of the following commands can be used any

number of times : “NOOP”, “HELP”, “EXPN”, “VRFY”, and “RSET”. The sequence

to use the “DATA” command can be ignored because this won’t ever be sent by the

verification program. If the “MAIL” command is given then it should be followed by

the commands “RCPT” and “DATA”. The standard does allow the sequence to be

broken by using a “RSET”. Finally “QUIT” must be the last command, and is used to

exit from the session.

Verification Possibilities

After looking at all the commands, how they should be sequenced and their possible

responses it is now possible to formulate a set of commands to verify an e-mail address.

Two possible methods have been identified. These methods may need refining during

testing.

PAGE 49 OF 125

Method 1

The first method uses the “VRFY” command. The client opens communication using

either “HELO” or “EHLO” command. The “VRFY” command is then sent with the

e-mail address needing to be verified. It’s the response from this command that will

determine whether the address does or does not, or whether the server refuses to verify

the addresses (probably for security reasons). A “RSET” command is then given to

assure that no e-mail is being sent and then the “QUIT” command is given to exit from

the SMTP communication.

Command 1: “HELO myserver” or “EHLO myserver”

Response 1: 250 Requested mail action okay, completed

Command 2: “VRFY test@example.com”

Response 2: 250 Requested mail action okay, completed

Command 3: “RSET”

Response 3: 250 Reset state

Command 4: “QUIT”

Response 4: 221 Service closing transmission channel

PAGE 50 OF 125

Method 2

The second method is similar to the first except that it uses the “RCPT” command to

verify the address rather than “VRFY”. Before that command can be given the “MAIL”

command must be issued, and a ‘from’ e-mail address.

Command 1: “HELO myserver” or “EHLO myserver”

Response 1: 250 ok

Command 2: “MAIL FROM: me@mysever.com”

Response 2: 250 ok

Command 3: “RCPT TO: test@test.com”

Response 3: 250 ok

Command 4: “RSET”

Response 4: 250 Reset state

Command 5: “QUIT”

Response 5: 221 Service closing transmission channel

It is also possible that a combination of the two methods may work better by verifying

the address both ways and then combining the two results to form an overall

verification result.

PAGE 51 OF 125

EXPN

“Server implementations SHOULD support both VRFY and EXPN. For security reasons,

implementations MAY provide local installations a way to disable either or both of these commands

through configuration options or the equivalent.”

(RFC2821 2001:22)

“This command asks the receiver to confirm that the argument Identifies a mailing list, and if so, to

return the membership of that list. If the command is successful, a reply is returned containing

information as described in section 3.5. This reply will have multiple lines except in the trivial case of a

one-member list.”

(RFC2821, 2001 : 35)

It is possible that the EXPN command can be used in a similar way to VRFY.

The EXPN command can only verify an e-mail address if it is used as an alias to

mailing list on the mail server. Most e-mail addresses are not used in this way so it is

anticipated that verification using EXPN will not be successful.

PAGE 52 OF 125

Manually testing via a telnet connection

Using telnet under Windows 2000 a manual connection can be made with a mail server.

In the example below an attempt to verify a hotmail account resulted in the hotmail mail

server giving a 550 code response. This provided successful validation of the first e-mail

address (as the example address did not exist). Further tests showed that the server also

responded as expected when given an address that existed. The return result for an

existing address was 250.

[Contacting mx01.hotmail.com [64.4.55.71]...]
[Connected]
220-HotMail (NO UCE) ESMTP server ready at Tue, 26 Feb 2002
05:10:16 -0800
220 ESMTP spoken here
HELO glennturner.co.uk
250 Requested mail action okay, completed
MAIL FROM:<validemail@glennturner.co.uk>
250 Requested mail action okay, completed
RCPT TO:<email.test@hotmail.com>
550 Requested action not taken: mailbox unavailable
RSET
250 Reset state
QUIT
221 Service closing transmission channel
[Connection closed]

Figure 17: An example telnet connection

PAGE 53 OF 125

A simple SMTP test application

Figure 18: A SMTP test application

A simple application was written to familiarize myself with the telnet components in

Delphi. This application did not use the MX record resolver object, so the user has to

type in server address, along with the ‘from address’, and the address to verify. The

program was entirely successful in allowing me to understand the telnet component.

Once the application was completed the next stage of the development was started.

PAGE 54 OF 125

Ending the session

Creating the SMTP test application has shown that closing the connection can

sometimes take a while because the mail server fails to respond promptly. There is an

option to close the socket without notifying the mail server. This would be quicker, but

I felt it would go against the etiquette of computer communication, or even against

SMTP standards. I sought advice on the matter, and found RFC 2821 held the answer

even giving recommended timeouts. E-mail address verification is relatively simple

when compared to actually sending an e-mail, so I chose to set the timeout for any

command to 30 seconds. If tests show this is a problem then this can easily be

increased.

Issues with verifying

New provisions in mail servers are constantly being added to stop spamming. In

particular Sendmail 8.9 released an “Anti-Spam Configuration Control” to aid mail

administrators (sendmail.org, nd). This tool allows easy control over many aspects of the

mail system, enabling the server to reject incoming mail based on information including

the source of the e-mail. Worried that configuring the server to stop spam may also stop

verification of e-mail addresses I again consulted RFC2821.

PAGE 55 OF 125

“A server MUST NOT return a 250 code in response to a VRFY or EXPN command unless it

has actually verified the address. In particular, a server MUST NOT return 250 if all it has done is

to verify that the syntax given is valid. In that case, 502 (Command not implemented) or 500 (Syntax

error, command unrecognized) SHOULD be returned. As stated elsewhere, implementation (in the

sense of actually validating addresses and returning information) of VRFY and EXPN are strongly

recommended. Hence, implementations that return 500 or 502 for VRFY are not in full compliance

with this specification.”

(RFC2821, 2001:22)

From the above statement it is very clear that the server has to verify the address to fully

comply with the standard. However, there are still return values that can be given if the

mail administer does not wish to allow e-mail verification. See the two statements

below.

“There may be circumstances where an address appears to be valid but cannot reasonably be verified in

real time, particularly when a server is acting as a mail exchanger for another server or domain.

"Apparent validity" in this case would normally involve at least syntax checking and might involve

verification that any domains specified were ones to which the host expected to be able to relay mail. In

these situations, reply code 252 SHOULD be returned. These cases parallel the discussion of RCPT

verification discussed in section 2.1. Similarly, the discussion in section 3.4 applies to the use of reply

codes 251 and 551 with VRFY (and EXPN) to indicate addresses that are recognized but that

would be forwarded or bounced were mail received for them. Implementations generally SHOULD be

more aggressive about address verification in the case of VRFY than in the case of RCPT, even if it

takes a little longer to do so.”

 (RFC2821, 2001:23)

PAGE 56 OF 125

“As discussed in section 3.5, individual sites may want to disable either or both of VRFY or EXPN

for security reasons. As a corollary to the above, implementations that permit this MUST NOT

appear to have verified addresses that are not, in fact, verified. If a site disables these commands for

security reasons, the SMTP server MUST return a 252 response, rather than a code that could be

confused with successful or unsuccessful verification.”

 (RFC2821, 2001: 65)

There therefore could be mail servers that will not allow verification and will give a 252

or 251 error code. But no servers, provided they abide by the mail standards will falsely

respond.

Reverse lookups

During manual testing using telnet it was noticed that one mail server was refusing to

accept the “MAIL FROM” command. I realised that the server could be doing a reverse

lookup on the domain of the from e-mail address. By changing domain to the actual

domain for the Internet connection, (“pc-62-30-95-242-st.blueyonder.co.uk” at the time

of writing) the mail server started accepting the “MAIL FROM” command. It is

therefore important when verifying to use the actual domain in the from address.

PAGE 57 OF 125

The final verification application

Figure 19: The verification application running

Figure 20: The validation tab

PAGE 58 OF 125

Figure 21: The verification tab

Figure 22: The destination tab

Figure 23: The SMTP tab

Figure 24: The status tab

Figure 25: The Errors tab

PAGE 59 OF 125

Key Features of the program

• Automatically detects e-mail addresses in text

• Validates/verifies e-mail addresses from multiple sources (Text box, Web page,
File, Directory)

• Optional Top Level Domain (TLD) checking

• Optional Verification of e-mail addresses

• Optional using of VRFY when verifying

• Multi-Threaded (choose between 1-99 threads to match the speed of system)

• Outputs to either the screen or file

• DNS server, connection name and from address can all be customised

• Program shows results in real-time

• SMTP, Status and errors tabs are used for debugging

Problems producing the prototype

The interface of the program was created first (without any underlying code) to get an

idea how I wanted the data and options to be presented. Validation checking was first

added, this required the extra regular expression module. Then parts of the previous

verification test programs were added, including the MX resolver. Then each extra

feature was added. The program worked well but was very slow, during the verification

stage the interface ‘locked up’. This was because while the program was waiting for a

reply from a mail server the application was in an endless loop.

The program found an e-mail address to verify, then tried to verify it, and then

went back to find another e-mail address. This was terribly inefficient.

A thread was added with the sole purpose just to verify. A data queue was put between

the thread searching for e-mails and the thread verifying. This was done to enable the

PAGE 60 OF 125

searching thread to keep running. Unfortunately the queue could grow very quickly,

while the verification thread had only processed a few addresses. Since the queue was in

RAM I didn’t want use all the memory, which could happen if the program was asked to

verify a large number of addresses. I also wanted to add more verification threads so

more e-mail addresses could be verified simultaneously.

Figure 26 shows the system devised to solve the problem. The system is based

around a queue that can store a maximum of 100 e-mail addresses. I single thread is

used to find e-mail addresses from the users chosen source. These are placed into the

queue when they are found. If the queue is full the thread ‘pauses’ itself. When a thread

is paused it requires no processing power. If the thread can’t find any addresses a flag is

raised and the thread stops. While the queue is not empty a number of verification

threads will be running. These run independently, each taking a single address off the

queue, verifying it and storing the results to the user’s chosen destination e.g. file,

screen. Any point where a thread may change any common data, such as the queue or

interface is known as a critical section. In Delphi the “synchronize” method can be used

to only allow one thread at a time to access a ‘resource’. Without the “synchronize”

method a number of threads could be writing at the same time, corrupting the data.

 Apart from those mentioned there were no major problems developing the

prototype.

PAGE 61 OF 125

Figure 26: Flowchart for verification threads

PAGE 62 OF 125

 Testing

The Test Data

Test data has been kindly donated by Gyroscope.com. The test data consists of 250 e-

mail addresses that were collected as part of an opt-in newsletter over a course of an 18

month period. Gyroscope.com is an international site with the majority of visitors living

in English speaking countries. The list of e-mail address reflects this with a wide range

of TLDs. Addresses range from hotmail accounts to ones with .nz for a top level

domain. The data protection 1998 (United Kingdom, 1998) prohibits the publication of

these addresses without consent from the people or companies these e-mail addresses

refer to. Verification to remove redundant e-mail addresses is considered as

maintenance and is not prohibited. The addresses have not been filtered in anyway prior

to testing and are not in any particular order.

Verification Testing

The tests check what percentage of e-mail addresses the application can verify using the

VRFY command. It is anticipated that if there are any problems with the verification

they will show up in these tests. Once the tests have taken place the results will be spilt

into three groups. Those that have been verified as e-mail addresses (working), those

that have been verified as non-working and those that can’t be verified (if any). The

addresses that have been marked as working and those that can’t be verified will be

included in Aprils Gyroscope.com newsletter. Provided no newsletter e-mails are

‘bounced’ we have proved the verification application has correctly verified those

addresses. Only the addresses that are marked by the application to be non-working

PAGE 63 OF 125

need to be checked. A second newsletter will be sent out to those addresses. If the

verification application has correctly verified them, all of them will bounce.

RCPT Testing

All 250 e-mail addresses will be subjected to a second type of verification using the

RCPT command rather than the VRFY command. No e-mails will be sent to confirm

the results. This is because the RCPT command was less successful in manual tests

(telnet) at correctly verifying an e-mail address. The RCPT results will just be used to

compare results with the VRFY command.

Speed/Thread Testing

A final set of tests will be conducted to test how effective threads are to the application.

The tests will use the same test data as before but use a different number of threads for

each test. The tests will be timed to see how much quicker the application is with

threads and find an optimum number of threads.

The Test System

The test system is a dual processor PC with Celeron 400 processors. The PC has half a

gigabyte of RAM and is running Windows 2000 Advanced Server. Internet connection

is via a Telewest cable modem with 512kilobits download and 128Kilobits upload. The

Internet connection is accessed through a Linux Smoothwall machine (IBM 350-P166)

that acts as a DNS server, Proxy and firewall.

PAGE 64 OF 125

Results

Starting with the thread speed tests, Figure 27 shows the results in the form of a bar

chart. Using a single thread to verify all 250 addresses took 1182 seconds (almost 20

minutes). Using 8 threads to verify took only 165 seconds which is about a 7th of the

time compared to using one thread. As more threads were used so the total time to

verify the addresses reduced. Using 32 threads is the approximate optimum number of

threads for the test system. More than 32 threads and the total verification time starts to

increase. This is due a number of possible factors; the processors are spending more

time switching between threads than verifying; the maximum amount of bandwidth for

the Internet connection has been reached; or processing power is being taken up by the

real-time data on the interface. Looking at the Windows task manager did not prove

conclusive, but indicated which most of the processing power was being used refresh

the interface.

 Two bar charts show the verification results from the mail servers. Figure 29

shows the frequency of each response while using only the RCPT command to verify.

Comparing the RCPT and VRFY commands, the RCPT command was the least

successful. Figure 29 shows 6% of e-mail addresses could not be found by the mail

server. In 4.4% of cases the mail server responded with error code 550 which represents

that the mailbox is unavailable (incorrect e-mail address). 0.4% of responses gave a

temporary error. Normally the addresses with temporary errors would put into their

own list to be checked again at a later date. Despite not being as successful as the VRFY

command, the RCPT command still recognised that 10.4% of the addresses were not

working.

Figure 28 shows the verification results from using the VRFY command. The most

noticeable column in Figure 28 is the verifiable column showing that 84.4% of the 250

PAGE 65 OF 125

e-mail addresses are verifiable, leaving just 14.8% that can’t be verified and 0.8% that

had a temporary error. 48% of addresses were verified as correct using VRFY compared

to 89.20% using RCPT.

 The two sets of newsletters sent out, which confirmed results of the verification

application showed that the application was working well. All the e-mails expected to

bounce did (up to two days later) and those that should have been received did not

bounce. Only a few e-mails were sent back saying the person was out of the office.

Figure 27: The time taken when different number of threads are running

0

200

400

600

800

1000

1200

Time taken for different number of threads running

Time taken 1182 165 109 102 83 86 88

1 8 16 24 32 36 48

PAGE 66 OF 125

Figure 28: Server responses to verify 250 different e-mail addresses

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Server responses to verify 250 different e-mail addresses using RCPT

Total % 6.00% 0.40% 4.40% 89.20%

Domain not on
server

Temporary error Verified as
Incorrect

Verified as
Correct

Figure 29: Server responses to verify 250 different e-mail addresses using RCPT

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Server responses to verify 250 different e-m ail addresses (us ing VRFY)

Series1 14.80% 0.80% 19.20% 17.20% 48.00% 84.40%

Can/will
not verify

Tem porary
error

Dom ain
not on
server

Verified as
Incorrect

Verified as
Correct Verifiable

PAGE 67 OF 125

Conclusion

Product

In conclusion I would regard the project as a success. The final application was able to

successfully validate e-mail addresses and verify them in the majority of cases.

When I started this project I was not aware of the complexity of the e-mail

address structure. Despite the complexity, validation is performed each time an e-mail is

sent. It is feasible to add validation to general software, but without 3rd-party tailored

components to assist, the work evolved is not proportional with the results received. An

unexpected consequence of validation was the ability to detect the position of an e-mail

address in surrounding text. This has many applications including detecting addresses in

files, documents and web pages.

Using the verification program, e-mail addresses are split into three groups.

Those that are working; those that are not working and those that can’t be verified.

84.4% of e-mail addresses from the test data were verified. Leaving just 15.6% of

addresses where the ‘correctness’ could not be established. The ability to test such a

high percentage of addresses held in company databases is a significant tool for

administrators to protect against 'dirty data' issues. It is questionable whether such

verification should be used at the point of data entry into systems, due to the

application's inability to say absolutely if the address is correct or not. In certain

circumstances, email addresses that cannot be verified may be assumed to be correct,

however this would largely depend upon the administrator’s requirements for gathering

accurate information.

PAGE 68 OF 125

A possible alternative is to use the verification in an advisory roll, so when a user

types an address into a system, a warning notification can be given to determine whether

the email address has been entered correctly.

The only negative aspect to the project is regarding the future of email address

verification. It is unknown if, in the future that the number of servers rejecting the

verification process will increase, in an attempt to reduce spamming.

During the project a number of programs were found that can perform various

forms verification on e-mail addresses. Some just check that the e-mail address’s domain

exists while the HexGadgets software does similar checking to the prototype

application. Figure 30 gives a list of the programs trading name and a URL.

Trading Name URL
Mail Utilities http://www.mailutilities.com/amv/
ASPmx http://www.internext.co.za/stefan/aspmx/
HexGadgets http://www.hexillion.com/
Clean address http://www.runnertechnologies.com/

Figure 30: A list of companies selling e-mail address verification products

PAGE 69 OF 125

Process

The Project Aim on page 10 started “To establish if it is feasible to produce a software

program to validate and verify e-mail addresses”. From this, a target was set to create a

prototype program to establish if this was the case. I would have preferred to have

produced UML (Unified modelling Language) diagrams for the prototype.

Unfortunately time constraints did not allow for any formal designs. It was more

important to create a working prototype than use certain techniques and fail to get the

program functioning because of a lack of time.

Given time I would have liked to have produced an Internet version for the

verification program with the interface being a web page. As Delphi can create IIS

(Internet Information Server) components this would have been relatively easy task.

The verification test data should be a good representation of average e-mail

addresses. If the verification program was used in a commercial environment the results

should be similar to the tests. I would have liked to have had test data with invalid

addresses to test against the validation program. Unfortunately a source of such data

could not be found. This type of data would have allowed the project to consider how

effective validation is compared to verification.

Figure 31 shows what I call an “e-mail address correctness hierarchy”. It shows

the methods that can be taken to increase the correctness of an e-mail address. At the

bottom there is no checking, and at the top there is theoretical absolute correctness. As

you go further up the column the e-mail address correctness increases, ‘dirty data’

reduces and the complexity of the checking increases. The verification in the prototype

produced is the second highest process, which currently can only be bettered by

theoretical absolute correctness.

PAGE 70 OF 125

Learning

Introducing threads into the application has been a major achievement for me during

the project. At the start of the project I had never created a multi-threaded program. I

now have an understanding of the limitations and benefits of threads. I’m sure this will

be of use for future applications. In this project threads proved to be very useful to

increase the speed of the application.

 I’ve used regular expressions in the past for very simple programs and scripts

but never in such scale like I have in this project. It surprised me how concise and

efficient regular expressions are and I would be more likely to use them in future

programs. I’ve also been made more aware of the complexity of mail systems, there

protocols, standards and limitations.

During the project the limitations of the Harvard referencing system at times

have caused problems with references to web based resources that had no authors or

creation dates. This problem was discovered when I found a reference to Sendmail

spam checking on Sendmail’s own site without an author or creation date. Clarification

was given by the University regarding such cases which resolved the matter.

PAGE 71 OF 125

Figure 31: E-mail address correctness hierarchy

PAGE 72 OF 125

Bibliography

Validation

Hexillion Technologies (nd) Hexillion [Online] [Cited 9 Oct 2001]
Available from URL: http://www.hexillion.com/

Internic (2002) The Domain Name System: A Non-Technical Explanation – Why
Universal Resolvabilty Is Important [Online] [Cited 1 Nov 2001]
Available from URL: http://www.internic.net/faqs/authoritative-dns.html

INT Media Group (nd) ASP 101 - Active Server Pages Resource Index - DNS
Functions [Online] [Cited 9 Oct 2001] Available from URL:
http://asp101.aspin.com/home/components/internet/dns?cob=asp101

Moten, L. (nd) Catching Bogus Addresses - active server pages - ASP [Online]
[Cited 7 Aug 2001] Available from URL: http://www.planet-source-
code.com/xq/ASP/txtCodeId.6803/lngWId.4/qx/vb/scripts/ShowCode.htm

ServerObjects Inc., (nd) Products - AspMX™ 1.5 [Online] [Cited 9 Oct 2001]
Available from URL: http://www.serverobjects.com/products.htm#aspmx

Shiran, Y. (nd) Validating email Address [Online] [Cited 10 March 2000]
Available from URL: http://www.webreference.com/js/tips/000310.html

Verification

Finer, J. (nd) The Forgotten Art of Email Address Validation [Online] [Cited 20 Jan
2002] Available from URL:
http://www.4guysfromrolla.com/webtech/093000-1.shtml

Thus PLC, (nd) Demon Internet: Internet Query Tools [Online] [Cited 10 Jan 2002]
Available from URL: http://www.demon.net/external/

SMTP Security

Wirtschafts University, (nd) VRFY, EXPN, and Security [Online] [Cited 20 Jan 2002]
Available from URL: http://www.wu-
wien.ac.at:8082/rfc/rfc2821.hyx/7.3_bVRFY,_bEXPN,_band_bSecurity

PAGE 73 OF 125

History

Brodbelt, M. (nd) A Brief History of Mail [Online] [Cited 20 Jan 2002] Available from
URL: http://www.coruscant.demon.co.uk/mike/sendmail/history.html

Computer Literacy (nd) E-mail History [Online] [Cited 20 Jan 2002] Available from
URL: http://compulit.uta.edu/mailhist.html

Nua Internet Surveys & ComputerScope Ltd. (2001) How Many Online? [Online]
[Cited 20 Jan 2002] Available from URL:
http://www.nua.ie/surveys/how_many_online/index.html

e-mail Systems

Albitz, P. and Liu, C. (1998) DNS and BIND. 3rd ed. Sebastopol: O’Reilly & Associates

Christiansen, T. and Torkington, N. (1999) Sendmail. Sebastopol: O’Reilly & Associates

Costales, B. and Allman, E. (1997) Sendmail. 2nd ed. Sebastopol: O’Reilly & Associates

GBdirect, (nd) An Overview of Internet Email [Online] [Cited 20 Jan 2002] Available
from URL: http://ebusiness.gbdirect.co.uk/howtos/mail-system.html

Maor et al, SMTP Simple Mail Transfer Protocol [Online] [Cited 20 Jan 2002] Available
from URL: http://raddist.rad.com/networks/1998/smtp/smtp.htm

Programming and languages

Friedl, J.E.F. (1998) Mastering Regular Expressions. 7th printing. Sebastopol: O’Reilly &
Associates

Netscape Communications Corp., (2000) RegExp [Online] [Cited 20 Jan 2002] Available
from URL: http://developer.netscape.com/docs/manuals/js/core/jsref15/regexp.html

Siever, E. and Spainhour, S. and Patwardhan, N. (1999) PERL in a nutshell. Sebastopol:
O’Reilly & Associates

Sorokin, A. V. (2001) Delphi freeware components: regular expressions [Online] [Cited
21 April 2002] Available from URL: http://anso.virtualave.net

Weissinger, A.K. (1999) ASP in a nutshell. Sebastopol: O’Reilly & Associates

PAGE 74 OF 125

Internet Standards

Braden, R. (1989) Requirements for Internet Hosts -- Application and Support [Online]
[Cited 8 Dec 2001] Available from URL: http://www.rfc.net/rfc1123.html

Deering, S. & Hinden, R. (1998) Internet Protocol Version 6 (IPv6) Specification
[Online] [Cited 8 Dec 2001] Available from URL: http://www.rfc.net/rfc2460.html

Gilligan, R. & Thomson, S. & Bound, J. & Stevens, w. (1997) Basic Socket Interface
Extensions for IPv6 [Online] [Cited 21 Apr 2002] Available from URL:
http://www.rfc.net/rfc2133.html

Internet society, (nd) RFC index search engine [Online] [Cited 25 Apr 2002]
Available from URL: http://www.rfc-editor.org/cgi-bin/rfcsearch.pl

Klensin, J. et al (2001) Internet Message Format RFC2821 [Online] [Cited 23 Feb 2002]
Available from URL: http://www.rfc.net/rfc2821.html

Mockapetris, P. (1983) DOMAIN NAMES - IMPLEMENTATION and
SPECIFICATION [Online] [Cited 18 Mar 2002] Available from URL:
http://www.rfc.net/rfc883.html

Postel, J. B. (1982) Simple Mail Transfer Protocol RFC821 [Online] [Cited 10 Feb 2002]
Available from URL: http://www.rfc.net/rfc821.html

Postel, J. B. (1994) Domain Name System Structure and Delegation
 [Online] [Cited 18 Mar 2002] Available from URL: http://www.rfc.net/rfc1591.txt

Resnick, P. (2001) Internet Message Format RFC2822 [Online] [Cited 10 Feb 2002]
Available from URL: http://www.rfc.net/rfc2822.html

General

Bradley, R. (1995) Understanding computer science for advanced level, 3rd ed.
Cheltenham: Stanley Thornes Publishers ltd

Harris, R. & Rickman, R. (1997) Workshop Studies – Workbook, 8th ed. Cheltenham:
Cheltenham & Gloucester College of Higher Education

Illingworth, V. et al (1996) Dictionary of computing, 4th ed. New York: Oxford
University Press.

SmoothWall Ltd, (2002) Smoothwall [Online] [Cited 25 Apr 2002]
Available from URL: http://www.smoothwall.org

World Wide Alliance of Top Level Domain-names, (nd) ccTLD Contact List [Online]
[Cited 25 Apr 2002] Available from URL:
http://www.wwtld.org/member_list/countrycodesort0917.php

PAGE 75 OF 125

References

 Campbell, T. (1998) The first e-mail message – Who sent it and what it said, [Online]
[Cited 8 Dec 2001] Available from URL:
http://www.pretext.com/mar98/features/story2.htm

 Computer Literacy, (nd) E-mail history, [Online] [Cited 20 Jan 2002]
Available from URL: http://compulit.uta.edu/mailhist.html

 The Radicati Group Inc., (2001) “Messaging Software: Market and product Analysis.
2001-2005” [Online] [Cited 24 Apr 2002]
Available from URL: http://www.software-aus.com.au/pdf/01MessagingBrochure.pdf

 Marcus, B. (2001) E-mail Changes Thwarting Web Marketers [Online][Cited 24 Apr
2002] Available from URL: http://www.digitrends.net/mna/index_14181.html

Bradner, S. (1996) The Internet Standards Process -- Revision 3
[Online][Cited 25 Apr 2002] Available from URL: http://www.ietf.org/rfc/rfc2026.txt

 Resnick, P.(2001) Internet Message Format RFC2822 [Online] [Cited 10 Feb 2002]
Available from URL: http://www.rfc.net/rfc2822.html

Marshall, D. (nd) History of the Internet, [Online] [Cited 5 May 2002] Available from
URL: http://www.netvalley.com/archives/mirrors/davemarsh-timeline-1.htm

Klensin, J. et al, (2001) Simple Mail Transfer Protocol [Online] [Cited 4 Nov 2001]
Available from URL: http://www.imc.org/rfc2821

Crocker, D. (1997) Augmented BNF for Syntax Specifications [Online] [Cited 23 Feb
2002] Available from URL: http://www.imc.org/rfc2234

Friedl, J.E.F. (1998) Mastering Regular Expressions. 7th printing. Sebastopol: O’Reilly &
Associates

Howe, D. (1997) regular expression from FOLDOC [Online] [Cited 26 Apr 2002]
Available from URL:
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=regular+expressions

Mockapetris, P. (1983) DOMAIN NAMES - IMPLEMENTATION and
SPECIFICATION [Online] [Cited 18 Mar 2002]
Available from URL: http://www.rfc.net/rfc883.html

Crocker, D. (1982) Standard for the Format of ARPA Internet Text Messages [Online]
[Cited 23 Feb 2002] Available from URL: http://www.imc.org/rfc822

(2001) IPv6: The Next Generation Internet!, [Online] [Cited 21 Feb 2002] Available
from URL: http://www.ipv6.org/

PAGE 76 OF 125

Sorokin, A. V. (2001) Delphi freeware components: regular expressions [Online] [Cited
21 April 2002] Available from URL: http://anso.virtualave.net

(nd) Anti-Spam Configuration Control, [Online] [Cited 1 May 2002] Available from
URL: http://www.sendmail.org/m4/anti-spam.html

United kingdom, Data Protection Act 1998, London: HMSO

PAGE 77 OF 125

Appendix

The current Top Level Domains (TLDs) (24/2/2002)

.ac .bo .dk .gq .ki .mp .pf .so .vc
.ad .br .dm .gr .km .mq .pg .sr .ve
.ae .bs .do .gs .kn .mr .ph .st .vg
.aero .bt .dz .gt .kp .ms .pk .sv .vi
.af .bv .ec .gu .kr .mt .pl .sy .vn
.ag .bw .edu .gw .kw .mu .pm .sz .vu
.ai .by .ee .gy .ky .museum .pn .tc .wf
.al .bz .eg .hk .kz .mv .pr .td .ws
.am .ca .eh .hm .la .mw .pro .tf .ye
.an .cc .er .hn .lb .mx .pt .tg .yt
.ao .cd .es .hr .lc .my .pw .th .yu
.aq .cf .et .ht .li .mz .py .tj .za
.ar .cg .fi .hu .lk .na .qa .tk .zm
.as .ch .fj .id .lr .name .re .tm .zw
.at .ci .fk .ie .ls .nc .ro .tn
.au .ck .fm .il .lt .ne .ru .to
.aw .cl .fo .in .lu .net .rw .tp
.az .cm .fr .info .lv .nf .sa .tr
.ba .cn .fx .int .ly .ng .sb .tt
.bb .co .ga .io .ma .ni .sc .tv
.bd .com .gb .iq .mc .nl .sd .tw
.be .com .gd .ir .md .no .se .tz
.bf .cr .ge .is .mg .np .sg .ua
.bg .cu .gf .it .mh .nr .sh .ug
.bh .cv .gh .jm .mil .nu .si .uk
.bi .cx .gi .jo .mk .nz .sj .um
.biz .cy .gl .jp .ml .om .sk .us
.bj .cz .gm .ke .mm .org .sl .uy
.bm .de .gn .kg .mn .pa .sm .uz
.bn .dj .gp .kh .mo .pe .sn .va

Figure 32: The current Top Level Domains

PAGE 78 OF 125

Extracts from RFC2822

2.2.2. Structured Header Field Bodies

WSP = ASCII value 32 (Space) and ASCII value 9
(horizontal tab)

3.2.1. Primitive Tokens

CRLF = ASCII value 11 and ASCII value 13

NO-WS-CTL = %d1-8 / ; US-ASCII control
characters
 %d11 / ; that do not include the
 %d12 / ; carriage return, line
feed,
 %d14-31 / ; and white space
characters
 %d127

text = %d1-9 / ; Characters excluding CR
and LF
 %d11 /
 %d12 /
 %d14-127 /
 Obs-text

3.2.2. Quoted characters

quoted-pair = ("\" text) / obs-qp

3.2.3. Folding white space and comments

FWS = ([*WSP CRLF] 1*WSP)

ctext = NO-WS-CTL / ; Non white space controls

 %d33-39 / ; The rest of the US-ASCII
 %d42-91 / ; characters not including
"(",
 %d93-126 ; ")", or "\"

ccontent = ctext / quoted-pair / comment

comment = "(" *([FWS] ccontent) [FWS] ")"

CFWS = *([FWS] comment) (([FWS] comment) / FWS)

PAGE 79 OF 125

3.2.4. Atom

atext = ALPHA / DIGIT / ; Any character except
controls,
 "!" / "#" / ; SP, and specials.
 "$" / "%" / ; Used for atoms
 "&" / "'" /
 "*" / "+" /
 "-" / "/" /
 "=" / "?" /
 "^" / "_" /
 "`" / "{" /
 "|" / "}" /
 "~"

atom = [CFWS] 1*atext [CFWS]

dot-atom = [CFWS] dot-atom-text [CFWS]

dot-atom-text = 1*atext *("." 1*atext)

3.2.5. Quoted strings

DQUOTE = ASCII value 34

qtext = NO-WS-CTL / ; Non white space controls

 %d33 / ; The rest of the US-ASCII
 %d35-91 / ; characters not including
"\"
 %d93-126 ; or the quote character

qcontent = qtext / quoted-pair

quoted-string = [CFWS] DQUOTE *([FWS] qcontent) [FWS]
DQUOTE [CFWS]

3.2.6. Miscellaneous tokens

word = atom / quoted-string

3.4.1. Addr-spec specification

addr-spec = local-part "@" domain

local-part = dot-atom / quoted-string / obs-local-part

domain = dot-atom / domain-literal / obs-domain

domain-literal = [CFWS] "[" *([FWS] dcontent) [FWS] "]"
[CFWS]

PAGE 80 OF 125

dcontent = dtext / quoted-pair

dtext = NO-WS-CTL / ; Non white space controls

 %d33-90 / ; The rest of the US-ASCII
 %d94-126 ; characters not including
"[",
 ; "]", or "\"

4.1. Miscellaneous obsolete tokens

obs-qp = "\" (%d0-127)

obs-text = *LF *CR *(obs-char *LF *CR)

obs-char = %d0-9 / %d11 / ; %d0-127 except CR
and
 %d12 / %d14-127 ; LF

4.4. Obsolete Addressing

obs-local-part = word *("." word)

obs-domain = atom *("." atom)

PAGE 81 OF 125

ASP to validate an e-mail address
<html>
<title>VALIDATION AND VERIFICATION OF E-MAIL ADDRESSES</title>
<body>
<center>
<h2>VALIDATION AND VERIFICATION
 OF E-MAIL ADDRESSES</h2>
PRESENTED AS PART OF THE

REQUIREMENT FOR AWARD WITHIN

THE UNDERGRADUATE MODULAR SCHEME

AT: GLOUCESTERSHIRE
UNIVERSITY

BY: GLENN TURNER
</div>

<%
 '**
 ' Finds e-mail addresses in a string
 ' ==================================
 ' Written by : Glenn Turner
 ' Date : 14/11/2001
 ' Updated : 15/11/2001 - now recognises IP addresses
 '
 ' Yet to:
 ' find correct tlds
 ' Does not take in account total length (any size)
 '
 '**

Function emailRegExp(byval ValidateTLD)
 Dim RegIPNo
 Dim RegDomain
 Dim RegLocal
 Dim RegIPaddr
 Dim RegQstring
 Dim ValidTLDs
 Dim RegDomainTLD

 ValidTLDs = _
 "(aero|biz|com|edu|museum|org|name|net|pro|mil|info|int|"&_
 "ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|arapa|as|at|au|aw|az|ba|" &_
 "bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|" &_
 "cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cu|cv|cx|cy|cz|de|dj|" &_
 "dk|dm|do|dz|ec|ee|eg|eh|er|es|et|fi|fj|fk|fm|fo|fr|fx|ga|" &_
 "gb|gd|ge|gf|gh|gi|gl|gov|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|"
&_
 "hr|ht|hu|id|ie|il|in|io|iq|ir|is|it|jm|jo|jp|ke|kg|" &_
 "kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|" &_
 "ma|mc|md|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|" &_
 "mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|" &_
 "om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|pt|pw|py|qa|re|ro|ru|"&_
 "rw|sa|sb|sc|sd|se|sg|sh|si|sj|sk|sl|sm|sn|so|sr|st|sv|sy|sz|" &_
 "tc|td|tf|tg|th|tj|tk|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|um|" &_
 "us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)"

'**
 ' Finds a number between 0-255
 ' e.g. 100-249 120-5/220-225 10-99 0-9

PAGE 82 OF 125

'**
 RegIPNo="(([1-2][0-4][\d])|([1-2][5][0-5])|([1-9][0-8])|([\d]))"

'**
 ' Finds a IP address in the format [X.X.X.X]

'**
 RegIPaddr = "\[" & RegIPNo & "(\." & RegIPNo & "){3}\]"

'**
 'Finds a domain e.g. server1.test.foo.com (TLD 2 to 6
characters.)

'**
 RegDomain = "((([a-zA-Z0-9\-]{1,62})+[\.])+[a-zA-Z0-9\-]*)"

 ' Do the same this time validating the TLD.

 RegDomainTLD = "((([a-zA-Z0-9\-]{1,62})[\.])+" & ValidTLDs & ")"

'**
 'Local part, Note: Two dots cannot be together

'**

 RegLocal = _
 "[\w*\$\?\#\%\&\^\+\-\=_\`\{\|\}\~\'\!\/]+" & _
 "([\.][\w*\$\?\#\%\&\^\+\-\=_\`\{\|\}\~\'\!\/]+)*"
 RegQstring = _
 "([\x22]([\w]|([\\\]" & _
 "[\011\014-\127\012\001\002\003\004\005\006\007\008\009]))*" & _
 "[\x22])"

 if ValidateTLD then
 emailRegExp = "((" & RegLocal & "|" & RegQstring & ")\@"&_
 "(" & RegDomainTLD & "|" & RegIPaddr & "))"
 else
 emailRegExp = "((" & RegLocal & "|" & RegQstring & ")\@"&_
 "(" & RegDomain & "|" & RegIPaddr & "))"
 end if
end function

 Dim String2Search
 Dim RegExp
 Dim foundmatched
 Dim foundmatch
 Dim email2validate
 Set RegExp = New RegExp

 string2search = request("email2validate")

 email2validate = request("email2validate")
 email2validate = """:-)""@test.co.uk"
 if trim(email2validate) = "" then
 email2validate = _
 "This is a test string test@test.com to find" & vbcrlf & _

PAGE 83 OF 125

 "e-mail foo.foo@foo1.co.uk* addresses within" & vbcrlf & _
 "a document. test@[62.63.1.255] test@b[1.1.1.1] x[1.1.1.256]"
 end if

if len(string2search) > 0 then
 'Response.write mailRegExp & "

"

 With RegExp
 if request("validateTLD") = "on" then
 .Pattern = emailRegExp(true)
 else
 .Pattern = emailRegExp(false)
 end if
 .IgnoreCase = False
 .Global = True
 End With

 Set foundmatch = RegExp.Execute(String2Search)

 %>

 <table border="1">
 <tr>
 <td bgcolor="#FF0000"><font
color="FFFFFF">Results</td>
 </tr><tr><td><%
 If foundmatch.Count > 0 Then
 string2search = _
 RegExp.replace(String2Search, "$1")
 end if

 Response.write "<PRE>" & String2Search &
"</PRE></td></tr></table>"

 If foundmatch.Count = 0 Then
 Response.Write vbcrlf & _
 "The data given was found NOT to" & _
 " be a valid e-mail address
" & _
 "If this is not the case please " & _
 "e-mail me at "&_
 "final@glennturner.co.uk" & _
 " so I can update the program."
 End If

 Set RegExp = nothing

end if
%>
<center>
<h2>e-mail validation program</h2>
Enter one or more e-mail addresses in the area below

(May be mixed in with other text)
<form ACTION="<%=Request.ServerVariables("SCRIPT_NAME")%>"
METHOD="POST" id=form1 name=form1>
 <textarea rows=5 cols=60 name="email2validate"
id="email2validate"><%=email2validate%></textarea>

 <input type="checkbox" <%if request("validateTLD") = "on"
then%>CHECKED<%end if%> name="validateTLD" id="validateTLD">
 <input type="submit" value="Validate" name="submit" id="submit">
</form>

PAGE 84 OF 125

</center>

<table align="center">
<tr><td width="600">
Abstract

<div align="justify">
E-mail addresses are crucial to the Internet community providing a
quick,
easy, cost effective means of contacting people to provide
information
or services. Along with the World Wide Web (WWW) e-mail is one of
key
building blocks of the Internet and arguably one of the reasons why
the
use of the Internet has grown so rapidly.

E-mailing provides the ability to market products or services to
existing
or potential customers at a low cost. This means a list of e-mail
addresses are often regarded as a highly prized asset by website
administrators. The amount of e-mail addresses in a company’s
database
can even increase the company’s value as it indicates the amount of
potential customers it has. As a result many companies place a high
degree of importance to the reliability (correctness) of gathered e-
mail
addresses.

The value of an e-mail address creates a need to check the
‘correctness’
of e-mail addresses entering into the company’s databases. Periodic
checking of e-mail addresses in a database would reduce the amount
of
addresses that are no longer in use. These unused addresses increase
as
people change their e-mail address, often by changing their internet
service provider.

This document investigates a number of methods to find the
‘correctness’
of an e-mail address, discusses how successful the methods found are
likely to be and how feasible it would be to use them for commercial
purposes.

</div>
</td></tr></table>

Download the full report (Soon to be
finished)
</body>
</html>

PAGE 85 OF 125

e-mail test messages

Test message to !#$%&'*+-/=?^_`{|}~@glennturner.co.uk

Received: From pcow004o.blueyonder.co.uk [195.188.53.119] by
mailserver04.fasthosts.co.uk
 (Matrix SMTP Mail Server v(1.3)) ID=0CB55809-2246-4991-9833-
7BD996B7C921 ; Mon, 29 Apr 2002 15:46:32 +0000
Received: from mail pickup service by blueyonder.co.uk with
Microsoft SMTPSVC;
 Mon, 29 Apr 2002 15:46:53 +0100
Content-Class: urn:content-classes:message
From: <glennturner@blueyonder.co.uk>
To: <!#$%&'*+-/=?^_`{|}~@glennturner.co.uk>
Subject: test
Date: Mon, 29 Apr 2002 15:46:52 +0100
Message-ID: <61ae01c1ef8c$b3825e90$7735bcc3@blueyonder.net>
MIME-Version: 1.0
Content-Type: text/plain;
 charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-Mailer: Microsoft CDO for Windows 2000
Thread-Index: AcHvjLOAyl+ndlt+EdaQvQCQJ9GOQA==
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2014.211
X-RCPT-TO: <!#$%&'*+-/=?^_`{|}~@glennturner.co.uk>

PAGE 86 OF 125

ASCII code table

+---+
0 NUL	1 SOH	2 STX	3 ETX	4 EOT	5 ENQ	6 ACK	7 BEL	
8 BS	9 HT	10 NL	11 VT	12 NP	13 CR	14 SO	15 SI	
16 DLE	17 DC1	18 DC2	19 DC3	20 DC4	21 NAK	22 SYN	23 ETB	
24 CAN	25 EM	26 SUB	27 ESC	28 FS	29 GS	30 RS	31 US	
32 SP	33 !	34 "	35 #	36 $	37 %	38 &	39 '	
40 (41)	42 *	43 +	44 ,	45 -	46 .	47 /	
48 0	49 1	50 2	51 3	52 4	53 5	54 6	55 7	
56 8	57 9	58 :	59 ;	60 <	61 =	62 >	63 ?	
64 @	65 A	66 B	67 C	68 D	69 E	70 F	71 G	
72 H	73 I	74 J	75 K	76 L	77 M	78 N	79 O	
80 P	81 Q	82 R	83 S	84 T	85 U	86 V	87 W	
88 X	89 Y	90 Z	91 [92 \	93]	94 ^	95 _	
96 `	97 a	98 b	99 c	100 d	101 e	102 f	103 g	
104 h	105 i	106 j	107 k	108 l	109 m	110 n	111 o	
112 p	113 q	114 r	115 s	116 t	117 u	118 v	119 w	
120 x	121 y	122 z	123 {	124		125 }	126 ~	127 DEL
+---+

PAGE 87 OF 125

Regular Expression Syntax

Core JavaScript Reference 1.5, [Online], Available from URL:
http://developer.netscape.com/docs/manuals/js/core/jsref15/regexp.html#1207831, [
2001 Nov. 15]

Character Meaning

\

For characters that are usually treated literally, indicates that the next character is special
and not to be interpreted literally.

For example, /b/ matches the character 'b'. By placing a backslash in front of b, that is
by using /\b/, the character becomes special to mean match a word boundary.

-or-

For characters that are usually treated specially, indicates that the next character is not
special and should be interpreted literally.

For example, * is a special character that means 0 or more occurrences of the preceding
character should be matched; for example, /a*/ means match 0 or more a's. To match
* literally, precede the it with a backslash; for example, /a*/ matches 'a*'.

^

Matches beginning of input. If the multiline flag is set to true, also matches immediately
after a line break character.

For example, /^A/ does not match the 'A' in "an A", but does match the first 'A' in "An
A."

$

Matches end of input. If the multiline flag is set to true, also matches immediately before
a line break character.

For example, /t$/ does not match the 't' in "eater", but does match it in "eat".

*

Matches the preceding item 0 or more times.

For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in "A bird warbled",
but nothing in "A goat grunted".

+

Matches the preceding item 1 or more times. Equivalent to {1,}.

For example, /a+/ matches the 'a' in "candy" and all the a's in "caaaaaaandy".

?

Matches the preceding item 0 or 1 time.

For example, /e?le?/ matches the 'el' in "angel" and the 'le' in "angle."

If used immediately after any of the quantifiers *, +, ?, or {}, makes the quantifier non-
greedy (matching the minimum number of times), as opposed to the default, which is
greedy (matching the maximum number of times).

Also used in lookahead assertions, described under (?=), (?!), and (?:) in this table.

.

(The decimal point) matches any single character except the newline character.

PAGE 88 OF 125

For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the tree", but not 'nay'.

(x)

Matches 'x' and remembers the match. These are called capturing parentheses.

For example, /(foo)/ matches and remembers 'foo' in "foo bar." The matched
substring can be recalled from the resulting array's elements [1], ..., [n] or from the
predefined RegExp object's properties $1, ..., $9.

(?:x)

Matches 'x' but does not remember the match. These are called non-capturing
parentheses. The matched substring can not be recalled from the resulting array's
elements [1], ..., [n] or from the predefined RegExp object's properties $1, ..., $9.

x(?=y)

Matches 'x' only if 'x' is followed by 'y'. For example, /Jack(?=Sprat)/ matches 'Jack'
only if it is followed by 'Sprat'. /Jack(?=Sprat|Frost)/matches 'Jack' only if it is
followed by 'Sprat' or 'Frost'. However, neither 'Sprat' nor 'Frost' is part of the match
results.

x(?!y)

Matches 'x' only if 'x' is not followed by 'y'. For example, /\d+(?!\.)/ matches a
number only if it is not followed by a decimal point.
/\d+(?!\.)/.exec("3.141") matches 141 but not 3.141.

x|y

Matches either 'x' or 'y'.

For example, /green|red/ matches 'green' in "green apple" and 'red' in "red apple."

{n}

Where n is a positive integer. Matches exactly n occurrences of the preceding item.

For example, /a{2}/ doesn't match the 'a' in "candy," but it matches all of the a's in
"caandy," and the first two a's in "caaandy."

{n,}

Where n is a positive integer. Matches at least n occurrences of the preceding item.

For example, /a{2,} doesn't match the 'a' in "candy", but matches all of the a's in
"caandy" and in "caaaaaaandy."

{n,m}

Where n and m are positive integers. Matches at least n and at most m occurrences of
the preceding item.

For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy," the first two a's in
"caandy," and the first three a's in "caaaaaaandy". Notice that when matching
"caaaaaaandy", the match is "aaa", even though the original string had more a's in it.

[xyz]

A character set. Matches any one of the enclosed characters. You can specify a range of
characters by using a hyphen.

For example, [abcd] is the same as [a-c]. They match the 'b' in "brisket" and the 'c' in
"ache".

[^xyz]

A negated or complemented character set. That is, it matches anything that is not
enclosed in the brackets. You can specify a range of characters by using a hyphen.

For example, [^abc] is the same as [^a-c]. They initially match 'r' in "brisket" and 'h'
in "chop."

[\b]

Matches a backspace. (Not to be confused with \b.)

\b

Matches a word boundary, such as a space. (Not to be confused with [\b].)

For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/ matches the 'ly' in
"possibly yesterday."

\B

Matches a non-word boundary.

For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/ matches 'ye' in

PAGE 89 OF 125

"possibly yesterday."

\cX

Where X is a letter from A - Z. Matches a control character in a string.

For example, /\cM/ matches control-M in a string.

\d

Matches a digit character. Equivalent to [0-9].

For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite number."

\D

Matches any non-digit character. Equivalent to [^0-9].

For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite number."

\f

Matches a form-feed.

\n

Matches a linefeed.

\r

Matches a carriage return.

\s

Matches a single white space character, including space, tab, form feed, line feed.
Equivalent to [\f\n\r\t\u00A0\u2028\u2029].

For example, /\s\w*/ matches ' bar' in "foo bar."

\S

Matches a single character other than white space. Equivalent to
[^ \f\n\r\t\u00A0\u2028\u2029].

For example, /\S/\w* matches 'foo' in "foo bar."

\t

Matches a tab.

\v

Matches a vertical tab.

\w

Matches any alphanumeric character including the underscore. Equivalent to [A-Za-
z0-9_].

For example, /\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W

Matches any non-word character. Equivalent to [^A-Za-z0-9_].

For example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

\n

Where n is a positive integer. A back reference to the last substring matching the n
parenthetical in the regular expression (counting left parentheses).

For example, /apple(,)\sorange\1/ matches 'apple, orange', in "apple, orange,
cherry, peach." A more complete example follows this table.

\0

Matches a NUL character. Do not follow this with another digit.

\xhh

Matches the character with the code hh (two hexadecimal digits)

PAGE 90 OF 125

\uhhhh

Matches the character with code hhhh (four hexadecimal digits).

Figure 33: Regular Expression Syntax

PAGE 91 OF 125

Source code for verification application

Verify.pas
unit verify;
{$DEFINE UsingWindows}

interface
{
**

 Finds e-mail addresses and verifies them (if chosen)

 Written by : Glenn Turner
 Purpose : As part of a final year degree project at
 Gloucestershire University
 Start Date : 21/01/2002
 Updated : N/A

 Thanks to:

 Andrey V. Sorokin <anso@mail.ru> http://anso.virtualave.net/
 for porting regular expressions to delphi

 Henry Spencer (University of Toronto)
 for developing the original regular expression C sources in 1986

 Albert A. Mavrin<amavr@yahoo.com>
 for creating the DirDialog component for Delphi 32 (May 1999)
 http://www.geocities.com/amavr

 Jon Wise at Gloucestershire University
 for general advice on creation of this program

**
}
uses
 SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs,
 QStdCtrls, QTypes, QExtCtrls, IdBaseComponent, IdComponent,
 IdTCPConnection, IdTCPClient, IdHTTP, QComCtrls, verifyaddr,
 StrUtils, QGrids, IniFiles, SyncObjs,
 RegExpr, stringqueue, dirdialog; // <- My modules

type
 TVerifythread = class(TThread)
 private
 // Internal variables
 Verify1 : TVerifier;// Object that can verify addresses.
 Iamrunning : boolean; // If this thread running.
 ThreadNo : Integer; // Unique ID for this object/thread.
 FinderRunning: boolean; // Is this finder thread running?

 // Input Info
 DNSserver : string; // The DNS server to use
 ThisSerName : string; // Call ourself this when 'SMTPing'
 Temail : string; // The e-mail verifying
 Femail : string; // From e-mail used 'SMTPing'.
 VRFY : boolean; // Whether we want to use VRFY
 EmailInfo : string; // Where it was found (positions)
 EmailSource : string; // Source of e-mail i.e. file name

PAGE 92 OF 125

 // Output Info
 Resultdata : string; // Error code (if any)
 RawResult : string; // Raw result from SMTP.
 SMTP : string;

 procedure SynLastOfGroup();
 procedure SynPrepare();
 procedure SynOutput();
 Procedure SynStatus();
 protected
 procedure Execute(); override;
 procedure OnTerminate;
 public
 procedure AssignNumber(Threadnumber : integer);
 end; { of class declaration }

//**
// End of TVerifythread declaration
//**

 TFinderthread = class(TThread)
 private
 stringInput : Tstrings; // Input (String)

 TypeOfSearch : integer; // webpage, input, file etc
 TLDcheckOn : boolean; // Options
 VerificationOn : boolean;
 Recursive : boolean; // Used with directory option

 EmailsFound : integer; // Summary results
 Errors : string;

 emailfound : string; // Working data
 wherefound : string;
 SearchingNow : boolean;
 Qsize : Integer; // Need know queue size so
 // we don't overflow it

 Saving2disk : string; // When saving to a file
 InputSource : string; // Stores source infomation.
 debuginfo : string; // For Debugging

 procedure Msgbox();
 procedure SynSearchingNow();
 Procedure SynQSize();
 procedure SynStats();
 procedure SynErrors();
 procedure AddEmail2Q();
 procedure SynInitialize();
 procedure FindInInput();
 procedure FindinDirectory();
 procedure Wait4Queue();

 procedure CheckString(regularexpression : string;
 var Astring : string;
 source : string;
 usingFile : string);
 protected
 procedure Execute; override;

PAGE 93 OF 125

 end; { of class declaration }

//**
// End of TFinderthread declaration
//**

 TVerifyForm = class(TForm)
 TabControl : TTabControl; // On the main form
 ClearButton : TButton;
 SaveFileButton : TButton;
 StartButton : TButton;
 IdHTTP : TIdHTTP;
 SaveDialog1 : TSaveDialog;
 OpenDialog1 : TOpenDialog;
 Timer1 : TTimer;
 Lblinput : TLabel;
 InputMemo : TMemo;
 Lbloutput : TLabel;
 sbrstatus : TStatusBar;
 OutputMemo : TMemo;
 FoundLabel : TLabel;
 QueuedLabel : TLabel;
 UsableLabel : TLabel;
 UnusableLabel : TLabel;
 NoFoundEdit : TEdit;
 NoQueuedEdit : TEdit;
 UsableEdit : TEdit;
 UnusableEdit : TEdit;

 SourceGroup : TGroupBox; // On source tab
 URLedit : TEdit;
 RecurSearchCheck : TCheckBox;
 webpageRadio : TRadioButton;
 InputTextRadio : TRadioButton;
 FileRadio : TRadioButton;
 DirectoryRadio : TRadioButton;

 ValidationGroup : TGroupBox; // On validation tab
 TLDCheck : TCheckBox;
 ValidationNoteLabel : TLabel;

 VerificationGroup : TGroupBox; // On verification tab
 VRFYCheck : TCheckBox;
 VerificationCheck : TCheckBox;
 ConNameLabel : TLabel;
 ConNameEdit : TEdit;
 DNSLabel : TLabel;
 DNSserverEdit : TEdit;
 FromemailEdit : TEdit;
 FromLabel : TLabel;
 ThreadsSpinEdit : TSpinEdit;
 NoThreadsLabel : TLabel;

 DestinationGroup : TGroupBox; // On Destination tab
 Output2ScreenRadio : TRadioButton;
 Output2FileRadio : TRadioButton;
 ShowwherefoundCheck : TCheckBox;
 TagFileOnCheck : TCheckBox;
 ShowSMTPCheckBox : TCheckBox;

 SMTPGroup : TGroupBox; // On SMPT tab

PAGE 94 OF 125

 TextBrowser : TTextBrowser;

 StatusGroup : TGroupBox; // On Status tab
 ThreadProgressBar : TProgressBar;
 QueueProgressBar : TProgressBar;
 ThreadsOnLabel : TLabel;
 BufferLabel : TLabel;
 StringGrid1 : TStringGrid;
 // On Error tab
 ErrorGroup : TGroupBox;
 TextBrowser1 : TTextBrowser;

 procedure TabControlChange(Sender: TObject);
 procedure StartButtonClick(Sender: TObject);
 procedure ClearButtonClick(Sender: TObject);
 procedure SaveFileButtonClick(Sender: TObject);
 procedure InputTextRadioClick(Sender: TObject);
 procedure webpageRadioClick(Sender: TObject);
 procedure FileRadioClick(Sender: TObject);
 procedure DirectoryRadioClick(Sender: TObject);
 procedure Timer1Timer(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormResize(Sender: TObject);
 procedure VerificationCheckClick(Sender: TObject);
 procedure Output2FileRadioClick(Sender: TObject);
 procedure FormClose(Sender: TObject;
 var Action: TCloseAction);

 private
 { Private declarations }
 iFHWrite : textfile; // File handle to write
 // results to disk.
 saving2disk : string;
 Caption : string;

 // Finding / validating
 FindThread : TFinderthread;
 FindingEmails : boolean; // searching for e-mail now?

 // Verifing
 Verifiers : array[0..64] of TVerifythread;
 VerifierOn : array[0..64] of boolean; // Running.
 VerifierID : array[0..64] of cardinal; // ThreadId.
 InputQ : Tstringqueue;
 InputSourceQ : Tstringqueue;
 InputInfoQ : Tstringqueue;

 procedure StartVerifyThreads();
 procedure StopAllThreads();
 procedure SaveSettings();
 procedure LoadSettings();
 procedure DumpResults(emailaddress : string;
 correctness : string;
 SMTP : string;
 Source : string;
 Comments : string);
 public
 { Public declarations }
 end;

//**

PAGE 95 OF 125

Const
 ValidTLDs =
 '(aero|biz|com|edu|museum|org|name|net|pro|mil|info|int|' +
 'ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|az|ba|' +
 'bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|' +
 'cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cu|cv|cx|cy|cz|de|dj|' +
 'dk|dm|do|dz|ec|ee|eg|eh|er|es|et|fi|fj|fk|fm|fo|fr|fx|ga|' +
 'gb|gd|ge|gf|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|' +
 'hr|ht|hu|id|ie|il|in|io|iq|ir|is|it|jm|jo|jp|ke|kg|' +
 'kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|' +
 'ma|mc|md|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|' +
 'mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|' +
 'om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|pt|pw|py|qa|re|ro|ru|' +
 'rw|sa|sb|sc|sd|se|sg|sh|si|sj|sk|sl|sm|sn|so|sr|st|sv|sy|sz|' +
 'tc|td|tf|tg|th|tj|tk|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|um|' +
 'us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)';

 //**
 // Finds a number between 0-255
 // e.g. 100-249 120-5/220-225 10-99 0-9
 //**
 RegIPNo='(([1-2][0-4][\d])|([1-2][5][0-5])|([1-9][0-8])|[\d])';

 //**
 // Finds a IP address in the format [X.X.X.X]
 //**
 RegIPaddr = '\[' + RegIPNo + '(\.' + RegIPNo + '){3}\]';

 //**
 //Finds domain e.g. server1.test.foo.com (TLD 2 to 6 characters.)
 //**
 RegDomain = '(([\w]+[\.])+[\w\d\-]{2,6})';

 // Do the same this time validating the TLD.

 RegDomainTLD = '((([\w][\w\d\-]{1,62})[\.])+' + ValidTLDs + ')';

 //**
 // Local part, Note: Two dots cannot be together
 //**

 RegLocal =
 '[\w*\$\?\#\%\&\^\+\-\=_\`\{\|\}\~\''\!\/]+' +
 '([\.][\w*\$\?\#\%\&\^\+\-\=_\`\{\|\}\~\''\!\/]+)*';

 RegExp =
 '(' + RegLocal + ')\@(' + RegDomainTLD + '|' + RegIPaddr + ')';

 RegExp2 =
 '((' + RegLocal + ')\@(' + RegDomain + '|' + RegIPaddr + '))';

 FinderBufferSize = 100;
 BufferWaittime = 1000; // Milliseconds
var
 VerifyForm : TVerifyForm;

implementation

{$R *.xfm}

PAGE 96 OF 125

//**

procedure TFinderthread.CheckString(regularexpression : string;
 var Astring : string;
 source : string;
 usingFile : string);
var
 res : boolean;
 first : boolean;
 finished : boolean;
 strstart : string;
 strend : string;
 RegExpEngine : TRegExpr;
begin
 RegExpEngine := TRegExpr.Create;

 { regular expression precompilation
 (When you assign Expression property,
 TRegExpr automatically compiles the r.e.).
 Note:
 if there are errors in regular expression
 TRegExpr will raise exception.
 }

 finished := false;
 first := true;
 while not finished do //Check until no matches left
 begin
 try
 RegExpEngine.Expression := regularexpression;
 try
 if not first then
 res := RegExpEngine.ExecNext // search for next match
 else
 begin
 // search from first position
 res := RegExpEngine.Exec(Astring);
 //r.compile;
 first := false;
 end;
 if res then
 begin // found
 if RegExpEngine.MatchPos[0] > 0 then
 begin
 str(RegExpEngine.matchpos[0], strstart);
 str(RegExpEngine.matchLen[0], strend);
 emailfound := RegExpEngine.Match[0];

 // Inc counter (e-mail addresses found)
 inc(emailsFound);

 wherefound := source + ' ' + strstart + ' - ' + strend;

 Synchronize(AddEmail2Q); // Adds e-mail to queue

 if VerificationOn then
 Synchronize(VerifyForm.StartverifyThreads);

 Synchronize(SynStats);
 end

PAGE 97 OF 125

 else
 finished:= true; // not found
 end
 else
 finished:= true;

 except on E:Exception do begin
 // during regular expression compilation or execution
 Errors := Errors + 'Error: "' + E.Message + '"';
 Synchronize(msgbox);
 end;
 end; //try

 except on E:Exception do
 begin // during regular expression compilation or execution
 Errors := 'Error compilation exception.';
 if E is ERegExpr then
 Errors := 'Error compilation exception (RegExpr).';

 Synchronize(msgbox);
 Synchronize(SynErrors);
 // continue exception processing
 raise Exception.Create (E.Message);
 end; //try
 end; //try
 end; //while

 RegExpEngine.Free;
end;

//**

procedure TFinderthread.SynInitialize();
begin
 Recursive := VerifyForm.RecurSearchCheck.checked;
 Saving2disk := VerifyForm.saving2disk;
 TLDcheckOn := VerifyForm.TLDcheck.checked;
 Stringinput := VerifyForm.InputMemo.lines;
 VerificationOn := VerifyForm.VerificationCheck.checked;
 emailsFound := 0;
 emailFound := '';
 Errors := '';
 VerifyForm.inputQ := Tstringqueue.create();
 VerifyForm.InputInfoQ := Tstringqueue.create();
 VerifyForm.InputSourceQ := Tstringqueue.create();
 debuginfo := '';
 If VerifyForm.InputTextRadio.checked then TypeOfSearch := 1;
 If VerifyForm.webpageRadio.checked then TypeOfSearch := 2;
 If VerifyForm.FileRadio.checked then TypeOfSearch := 3;
 If VerifyForm.DirectoryRadio.checked then TypeOfSearch := 4;
end;

//**

procedure TFinderthread.SynStats();
begin
 VerifyForm.NoFoundEdit.text := cstr(EmailsFound);
 VerifyForm.NoQueuedEdit.text := cstr(VerifyForm.inputQ.size);
end;

//**

PAGE 98 OF 125

procedure TFinderthread.SynQsize();
begin
 Qsize := VerifyForm.inputQ.size;
end;

//**

procedure TFinderthread.SynErrors();
begin
 VerifyForm.TextBrowser.text := VerifyForm.TextBrowser.Text+errors;
end;

//**

procedure TFinderthread.Msgbox();
begin
 showmessage('VERIFY ERROR:' + debuginfo);
end;

//**

procedure TFinderthread.AddEmail2Q();
begin
 if VerificationOn then // if verifing add to verify queue
 begin
 VerifyForm.InputQ.Add(emailfound);
 VerifyForm.InputSourceQ.Add(InputSource);
 VerifyForm.InputInfoQ.Add(wherefound);
 end
 else
 VerifyForm.DumpResults(emailfound,'','',Saving2disk,wherefound);
end;

//**

procedure TFinderthread.SynSearchingNow();
begin
 VerifyForm.FindingEmails := SearchingNow;
 VerifyForm.QueueProgressBar.position :=
 strtoint(VerifyForm.NoQueuedEdit.text);
end;

//**

procedure TFinderthread.FindInInput();
var
 strtemp : string;
 i : integer;
 lineno : string;
begin
 i := -1;
 SearchingNow := true;
 Synchronize(SynSearchingNow);

 if Stringinput.count > 0 then // If not empty
 //for i := 0 to Stringinput.Count do // For every line
 while (i <= Stringinput.Count) AND (NOT Terminated) do
 begin
 inc(i);
 if VerificationOn then // No need to wait for queue

PAGE 99 OF 125

 Wait4Queue; // if verifing
 str(i,lineno);
 strtemp := Stringinput[i];
 if TLDcheckon then
 CheckString(regexp, strtemp,
 'Line : ' + lineno + ' characters ', '')
 else
 CheckString(regexp2, strtemp,
 'Line : ' + lineno + ' characters ', '');
 end;

 SearchingNow := false;
 Synchronize(SynSearchingNow);
end;

//**

procedure TFinderthread.FindinDirectory();
var
 DirDialog : TDirDialog;
 afiles : Tstrings;
 path : string;
 i : integer;
 FileCaption : string;
 Fstr : string;
 FileNoOn : integer;
 sourcefile : Tstrings;

begin
 afiles := TStringList.Create;

 try
 // Ask for a directory to search through.
 DirDialog := TDirDialog.Create(application);
 DirDialog.Execute;
 path := DirDialog.DirName;
 DirDialog.Free;

 //caption := 'Searching directory... ' + path;
 //VerifyForm.TimerON; // Show searching

 if path <> '' then
 begin
 getfiles(path,'*.*', afiles,
 Recursive,
 false,
 VerifyForm.Caption);
 i := 0;
 while (i <= (afiles.count - 1)) AND (NOT Terminated) do
 //for i := 1 to afiles.count - 1 do
 begin
 inc(i);

 // Write which file on (results file).
 FileCaption := '[' + afiles.Strings[i] + ']';

 try
 File2String(afiles.Strings[i], Fstr); // Get File
 str2plaintxt(Fstr); // binary convert
 sourcefile := TStringList.Create; // Spilt into rows
 sourcefile.text := fstr;

PAGE 100 OF 125

 fstr := '';

 // Process line by line
 FileNoOn := 0;
 //for FileNoOn := 1 to sourcefile.count - 1 do
 while (FileNoOn <= (sourcefile.count - 1)) AND
 (NOT Terminated) do
 begin
 inc(FileNoOn);
 if VerificationOn then // Don't wait for the queue
 Wait4Queue; // if verifing
 fstr := sourcefile[FileNoOn];
 CheckString(Regexp, fstr, afiles.Strings[i],
 FileCaption);
 end;
 sourcefile.free;

 except on E:Exception do
 VerifyForm.outputmemo.lines.Add(
 'Error: "' + E.Message + '"');
 end; {try}

 end;
 end;

 finally
 afiles.Free;
 end;

end;

//**

procedure TFinderthread.Wait4Queue();
var
 FinishEvent : Tevent;
begin
 Synchronize(SynQsize); // Get queue size before going into loop

 // Create an Event (Trigger)
 if Qsize > FinderBufferSize then
 begin
 FinishEvent := TEvent.Create(Nil, True, False, 'Finderwait');

 while (Qsize > FinderBufferSize) do
 begin
 // Clear any calls to the event.
 FinishEvent.ResetEvent;

 // Wait (stop processing !!! until event is triggered)
 // Call in "SMTPconDisconnect"
 if FinishEvent.WaitFor(BufferWaittime) <> wrSignaled then
 begin
 // Do nothing. CPU will be idle.
 // CPU Usage will be near 0% (NOT 100%. ike you may think)
 // Its an interrupt not a loop!
 end;
 Synchronize(SynQsize); // Get queue size again.
 end;
 FinishEvent.free;
 end;

PAGE 101 OF 125

end;

//**

procedure TFinderthread.execute();
begin
 Synchronize(SynInitialize); // Get settings from user

 if ((TypeOfSearch = 1) or (TypeOfSearch = 2) or (TypeOfSearch =
3)) then
 FindInInput();
 if TypeOfSearch = 4 then
 FindInDirectory();
end;

//**
// End of TFinderthread Thread
//**

//**
// Start of TVerifythread Thread
//**

procedure TVerifythread.Execute();
begin
 Iamrunning := true;
 Synchronize(SynStatus);

 try

 // Initialize variables + synchronize data
 Synchronize(Synprepare);

 // Do while queue not emtpy and not finished!

 While ((FinderRunning = true) or (Temail <> '')) AND
 (NOT Terminated) do
 begin
 if (Temail <> '') then
 begin
 Verify1 := TVerifier.Create();
 Verify1.DNSserver := DNSserver;
 Verify1.ThisServersName := ThisSerName;

 Rawresult := Verify1.verify(Temail, Femail, VRFY);
 if Rawresult = '' then
 resultdata := ' OK '
 else
 resultdata := ' BAD [' + cstr(rawresult) + ']';

 // For debugging
 SMTP := SMTP + verify1.Details;

 // Initialize variables + synchronize data
 try
 Verify1.free;
 finally
 Synchronize(SynOutput);
 end;
 end;

PAGE 102 OF 125

 Synchronize(Synprepare); // Must do last
 end;

 finally
 Iamrunning := false;
 Synchronize(SynStatus);
 end;
end;

//**

procedure TVerifythread.Onterminate();
begin
 Verify1.free; // Clean Up

 Iamrunning := false;
 Synchronize(SynStatus);
 Synchronize(SynLastOfGroup);
end;

//**

procedure TVerifythread.SynPrepare();
begin
 Resultdata := '';
 SMTP := '';
 DNSserver := VerifyForm.DNSserverEdit.text;
 ThisSerName := VerifyForm.ConNameEdit.text;
 EmailSource := VerifyForm.inputSourceQ.Remove;
 EmailInfo := VerifyForm.inputInfoQ.Remove;
 Temail := VerifyForm.inputQ.Remove;
 Femail := VerifyForm.FromemailEdit.text;
 VRFY := VerifyForm.VRFYCheck.checked;
 FinderRunning := VerifyForm.FindingEmails;

 VerifyForm.StringGrid1.Cells[0, Threadno] :=
 '[' + cstr(threadno) + ']' +
 Temail +
 ' (' + TimeToStr(now) + ')';
end;

//**

procedure TVerifythread.AssignNumber(Threadnumber : integer);
begin
 Threadno := Threadnumber;
end;

//**

procedure TVerifythread.SynStatus();
begin
 VerifyForm.VerifierID[Threadno] := threadid;
 VerifyForm.VerifierOn[Threadno] := Iamrunning;
end;

//**

procedure TVerifythread.SynOutput();
begin
 VerifyForm.DumpResults(Temail, resultdata, SMTP,

PAGE 103 OF 125

 EmailSource, EmailInfo);

 VerifyForm.TextBrowser.text := SMTP; // For 'live action'
 if rawresult = '' then
 VerifyForm.UsableEdit.text :=
 inttostr(strtoint(VerifyForm.UsableEdit.text)+ 1)
 else
 VerifyForm.UnUsableEdit.text :=
 inttostr(strtoint(VerifyForm.UnUsableEdit.text)+ 1);

 VerifyForm.NoQueuedEdit.text := cstr(VerifyForm.inputQ.size);
end;

//**

procedure TVerifythread.SynLastOfGroup();
var
 Threadsrunning : integer;
 I : integer;
 Maxsize : integer; // No of possible threads running.
begin
 // Checks to see if this last verify thread to terminate

 Threadsrunning := 0;
 // Array starts at 0 so - 1
 Maxsize := VerifyForm.ThreadsSpinEdit.value - 1;

 for I := 0 to maxsize do
 begin
 if VerifyForm.VerifierOn[i] = true then
 inc(Threadsrunning);
 end;

 // This was the last thread to run.
 // Clear up. e.g. Close any open files etc.
 if threadsrunning = 0 then
 begin
 // ******* If writting results to disk *******
 if VerifyForm.Saving2disk <> '' then
 CloseFile(VerifyForm.iFHWrite);
 // ***
 end;
end;

//**
// End of TVerifythread Thread
//**

procedure TVerifyForm.DumpResults(emailaddress : string;
 correctness : string;
 SMTP : string;
 Source : string;
 Comments : string);
var
 Finaloutput : string;
begin
 // Save or display results, either validated or verified
 Finaloutput := emailaddress + ', ' + correctness;

 if ShowwherefoundCheck.checked then
 Finaloutput := Finaloutput + ', ' + Comments;

PAGE 104 OF 125

 if TagFileOnCheck.checked then
 Finaloutput := Finaloutput + ', ' + Source;

 if ShowSMTPCheckBox.checked then
 Finaloutput := Finaloutput + ', ' + SMTP;

 if Saving2disk <> '' then
 Writeln(iFHWrite, Finaloutput)
 else
 //OutputMemo.lines.add(Finaloutput);
 // Could use this but the line below is much quicker
 OutputMemo.Append(Finaloutput);
end;

//**

procedure TVerifyForm.StartVerifyThreads();
var
 I : integer;
 Maxsize : integer;
begin
 // Gentleman... Start your threads...
 Maxsize := ThreadsSpinEdit.value - 1; // Array starts at 0 so - 1

 for I := 0 to maxsize do
 begin
 if VerifierOn[i] = false then
 begin
 application.ProcessMessages;
 verifierOn[i] := false;
 verifierID[i] := 0;
 verifiers[i] := TVerifythread.create(true);
 verifiers[i].FreeOnTerminate := true;
 verifiers[i].AssignNumber(i);
 verifiers[i].resume;
 end;
 end
end;

//**

procedure TVerifyForm.StopAllThreads();
var
 i : integer; // Loop control variable.
begin
 // Gentleman... Start stop your threads...

 // Stop the finder thread
 if FindThread <> nil then
 FindThread.Terminate;

 // Stop verify threads
 for I := 0 to high(VerifierOn) do
 begin
 if VerifierOn[i] = true then // if its running stop it
 verifiers[i].Terminate;
 end;
end;

//**

PAGE 105 OF 125

procedure TVerifyForm.TabControlChange(Sender: TObject);
begin
 Sourcegroup.top := 28;
 ValidationGroup.top := 28;
 verificationGroup.top := 28;
 DestinationGroup.top := 28;
 SMTPGroup.top := 28;
 StatusGroup.top := 28;
 ErrorGroup.Top := 28;

 Sourcegroup.visible := false;
 ValidationGroup.visible := false;
 verificationGroup.visible := false;
 DestinationGroup.visible := false;
 SMTPGroup.visible := false;
 StatusGroup.visible := false;
 ErrorGroup.visible := false;

 Sourcegroup.BringToFront;
 ValidationGroup.BringToFront;
 verificationGroup.BringToFront;
 DestinationGroup.BringToFront;
 SMTPGroup.BringToFront;
 StatusGroup.BringToFront;
 ErrorGroup.BringToFront;

 case Tabcontrol.tabindex of
 0: Sourcegroup.visible := true;
 1: ValidationGroup.visible := true;
 2: VerificationGroup.visible := true;
 3: DestinationGroup.visible := true;
 4: SMTPGroup.visible := true;
 5: StatusGroup.visible := true;
 6: ErrorGroup.visible := true;
 else
 Sourcegroup.visible := true; // Just in case.
 end;
end;

//**

procedure TVerifyForm.StartButtonClick(Sender: TObject);
var
 Fstr : string;
begin
 if StartButton.caption = '&Start' then
 begin
 StartButton.caption := '&Stop';
 savesettings;

 ThreadProgressBar.max := ThreadsSpinEdit.value;
 ThreadProgressBar.position := 0;

 // ******* If writting results to disk *******
 if VerifyForm.Saving2disk <> '' then
 begin
 AssignFile(iFHWrite, Saving2disk);
 if fileexists(Saving2disk) then
 append(iFHWrite)
 else

PAGE 106 OF 125

 rewrite(iFHWrite);
 end;
 // ***

 if FileRadio.checked then
 if OpenDialog1.execute then
 begin
 //InputMemo.Lines.LoadFromFile(OpenDialog1.FileName);
 File2String(OpenDialog1.FileName, Fstr); // Get File
 //str2plaintxt(Fstr); // Binary convert
 InputMemo.Lines.Clear;

 //InputMemo.lines.Text := fstr;
 InputMemo.append(Fstr);
 end;

 if webpageRadio.checked then
 begin
 InputMemo.lines.clear;
 InputMemo.append(idHTTP.Get(URLedit.Text));
 end;

 FindThread := TFinderthread.create(true);
 Findthread.FreeOnTerminate := true;
 FindThread.resume;

 // Turn the timer on. No need to turn it off (it does it itself)
 Timer1.enabled := true;
 end
 else
 begin
 StartButton.enabled := false;
 StartButton.caption := '&Start';
 StopallThreads;
 StartButton.enabled := true;
 end;
end;

//**

procedure TVerifyForm.ClearButtonClick(Sender: TObject);
begin
 OutputMemo.lines.clear;
 usableedit.text := '0';
 UnusableEdit.text := '0';
 NoFoundEdit.text := '0'; // Set number e-mails found to zero.
end;

//**

procedure TVerifyForm.SaveFileButtonClick(Sender: TObject);
begin
 if SaveDialog1.Execute then
 OutputMemo.lines.SaveToFile(SaveDialog1.FileName);
end;

//**

procedure TVerifyForm.InputTextRadioClick(Sender: TObject);
begin
 URLedit.enabled := false;

PAGE 107 OF 125

 RecurSearchCheck.enabled := false;
 TagFileOnCheck.checked := false; // Can't show which file on
end;

//**

procedure TVerifyForm.webpageRadioClick(Sender: TObject);
begin
 RecurSearchCheck.enabled := false;
 URLedit.enabled := true;
 TagFileOnCheck.checked := false; // Can't show which file on
end;

//**

procedure TVerifyForm.FileRadioClick(Sender: TObject);
begin
 URLedit.enabled := false;
 RecurSearchCheck.enabled := false;
 TagFileOnCheck.checked := false; // Can't show which file on
end;

//**

procedure TVerifyForm.DirectoryRadioClick(Sender: TObject);
begin
 URLedit.enabled := false;
 RecurSearchCheck.enabled := true;
 TagFileOnCheck.checked := true; // Can show which file on
end;

//**

procedure TVerifyForm.Timer1Timer(Sender: TObject);
var
 i : integer;
 Threadsrunning : integer;
begin
 if length(caption) > 80 then
 VerifyForm.sbrStatus.simpletext := '...' + rightstr(caption, 80)
 else
 VerifyForm.sbrStatus.simpletext := caption;

 Threadsrunning := 0;
 for i := 0 to (ThreadsSpinEdit.value - 1) do
 begin
 if VerifierOn[i] then inc(Threadsrunning);
 end;
 ThreadProgressBar.caption :=
 cstr(Threadsrunning) + ' out of ' + cstr(ThreadsSpinEdit.value);

 ThreadProgressBar.position := Threadsrunning;
 if (Threadsrunning = 0) then
 begin
 QueueProgressBar.position := 0;
 timer1.enabled := false;
 end
 else
 begin
 // don't run this if no threads running
 QueueProgressBar.position := VerifyForm.inputQ.size;

PAGE 108 OF 125

 Application.ProcessMessages;
 Application.ProcessMessages;
 end;

end;

//**

procedure TVerifyForm.FormCreate(Sender: TObject);
begin
 Timer1.Enabled := false;
 FindingEmails := false; // Currently not finding e-mails
 ThreadProgressBar.max := ThreadsSpinEdit.value;
 ThreadProgressBar.position := 0;
 ThreadProgressBar.caption := '';

 loadsettings;
end;

//**

procedure TVerifyForm.FormResize(Sender: TObject);
const
 textstart = 155;
 memobottomgap = 225;
 CentreGap = 15;
var
 width : integer;
 Farleft : integer;
begin
 width := (VerifyForm.width - 35) div 2;
 Farleft := (VerifyForm.width div 2) + 10;

 TabControl.width := (width * 2) + CentreGap;
 InputMemo.width := width;
 InputMemo.top := textstart;
 InputMemo.height := VerifyForm.height - memobottomgap;

 OutputMemo.left := InputMemo.left + width + CentreGap;
 OutputMemo.width := width;
 OutputMemo.top := textstart;
 OutputMemo.height := VerifyForm.height - memobottomgap;

 SaveFileButton.top :=
 OutputMemo.top + OutputMemo.height + CentreGap;

 SaveFileButton.Left :=
 (TabControl.width - SaveFileButton.width) + 7;

 ClearButton.left :=
 (SaveFileButton.Left - ClearButton.width) - 10;

 ClearButton.top := SaveFileButton.top;
 StartButton.left := SaveFileButton.Left - 18;
 FoundLabel.top := VerifyForm.height - 65;
 QueuedLabel.top := VerifyForm.height - 45;
 UsableLabel.Top := VerifyForm.height - 65;
 UnUsableLabel.top := VerifyForm.height - 45;
 NoFoundEdit.top := VerifyForm.height - 65;
 NoQueuedEdit.top := VerifyForm.height - 45;

PAGE 109 OF 125

 UsableEdit.top := VerifyForm.height - 65;
 UnusableEdit.Top := VerifyForm.height - 45;
 Lbloutput.left := Farleft;
end;

//**

procedure TVerifyForm.VerificationCheckClick(Sender: TObject);
begin
 if VerificationCheck.checked then
 begin
 VRFYCheck.enabled := true;
 DNSserverEdit.enabled := true;
 FromemailEdit.enabled := true;
 ConNameEdit.enabled := true;
 ThreadsSpinEdit.enabled := true;
 end
 else
 begin
 VRFYCheck.enabled := false;
 DNSserverEdit.enabled := false;
 FromemailEdit.enabled := false;
 ConNameEdit.enabled := false;
 ThreadsSpinEdit.enabled := false;
 end;
end;

//**

procedure TVerifyForm.SaveSettings();

var
 {$IFDEF UsingWindows}
 Settings : TMemIniFile;
 {$ENDIF}
begin
 {$IFDEF UsingWindows}
 Settings := TMemIniFile.create('settings.ini');

 // ***** Source tab *****
 Settings.WriteString(
 'general','URLedit',URLedit.text);
 Settings.WriteBool(
 'general','RecursiveSearchCheck', RecurSearchCheck.checked);
 Settings.WriteBool(
 'general','InputTextRadio', InputTextRadio.checked);
 Settings.WriteBool(
 'general','WebpageRadio', webpageRadio.checked);
 Settings.WriteBool(
 'general','FileRadio', FileRadio.checked);
 Settings.WriteBool(
 'general','DirectoryRadio', DirectoryRadio.checked);

 // *************** Validation tab ***************
 Settings.WriteBool(
 'general','TLDCheck',TLDCheck.checked);

 // *************** Verification tab ***************
 Settings.WriteBool(
 'general','VerificationCheck',VerificationCheck.checked);
 Settings.WriteBool(

PAGE 110 OF 125

 'general','VRFYCheck',VRFYCheck.checked);
 Settings.WriteInteger(
 'general','Threads', ThreadsSpinEdit.Value);

 Settings.WriteString(
 'general','DNSserverEdit',DNSserverEdit.text);
 Settings.WriteString(
 'general','FromemailEdit',FromemailEdit.text);
 Settings.WriteString(
 'general','ConNameEdit',ConNameEdit.text);

 Settings.UpdateFile;
 Settings.free
 {$ENDIF}
end;

//**

procedure TVerifyForm.LoadSettings();

var
 {$IFDEF UsingWindows}
 Settings : TMemIniFile;
 {$ENDIF}
begin
 {$IFDEF UsingWindows}
 Settings := TMemIniFile.create('settings.ini');

 // *************** Source tab ***************
 URLedit.text := Settings.ReadString(
 'general','URLedit','http://www.gyroscope.com/shipping.asp');

 RecurSearchCheck.checked := Settings.ReadBool(
 'general','RecursiveSearchCheck',false);

 InputTextRadio.checked := Settings.ReadBool(
 'general','InputTextRadio',true);

 webpageRadio.checked := Settings.ReadBool(
 'general','webpageRadio',false);

 FileRadio.checked := Settings.ReadBool(
 'general','FileRadio',false);

 DirectoryRadio.checked := Settings.ReadBool(
 'general','DirectoryRadio',false);

 // *************** Validation tab ***************
 TLDCheck.checked := Settings.Readbool(
 'general','TLDCheck',true);

 // *************** Verification tab ***************
 VerificationCheck.checked := Settings.Readbool(
 'general','VerificationCheck',true);
 VRFYCheck.checked := Settings.Readbool(
 'general','VRFYCheck',true);
 ThreadsSpinEdit.Value := Settings.ReadInteger(
 'general','Threads',2);
 DNSserverEdit.text := Settings.ReadString(
 'general','DNSserverEdit','192.168.0.99');
 FromemailEdit.text := Settings.ReadString(

PAGE 111 OF 125

 'general','FromemailEdit','s9701050@glos.ac.uk');
 ConNameEdit.text := Settings.ReadString(
 'general','ConNameEdit','testminiserver');

 //webpageRadio.checked := true;
 Settings.free
 {$ENDIF}
end;

//**

procedure TVerifyForm.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 StopAllThreads;
 Savesettings;
end;

//**

procedure TVerifyForm.Output2FileRadioClick(Sender: TObject);
begin
 if SaveDialog1.execute then
 begin
 saving2disk := SaveDialog1.FileName;
 end;
end;

//**

end.

PAGE 112 OF 125

MXloolup.pas
unit MXlookup;

interface

uses
 IdDNSResolver, SysUtils, messages, Classes, IdBaseComponent,
 IdComponent, IdUDPBase, IdUDPClient, IdTCPConnection, IdTCPClient,
 IdWhois, QForms;

type
 TMXlookerup = class
 private
 { Private declarations }
 DnsResource: TIdDNSResourceItem; // Used to extract details
 DNSResolver: TIdDNSResolver;
 results: string;

 public
 { Public declarations }
 constructor create();
 destructor Destroy(); Override;
 function FullResults(): string;
 function GetMXrecord(DomainV : string;
 DNS : string;
 timeout: integer): string;

 end;

//**

implementation

constructor TMXlookerup.create();
begin
 DNSResolver := TIdDNSResolver.Create(Application);
end;

//**

destructor TMXlookerup.Destroy();
begin
 //DnsResource.free; //No need to free this one.
 DNSResolver.free;
 inherited;
end;

//**

function TMXlookerup.GetMXrecord(DomainV : string;
 DNS : string;
 timeout : integer):string;
var
 aQueryType: integer;
begin { ConnectBtnClick }
 aQueryType := 15; // MX records
 try
 results := '';
 DnsResolver.Host := DNS;
 DnsResolver.ReceiveTimeout := TimeOut;

PAGE 113 OF 125

 DnsResolver.ClearVars;
 with DnsREsolver.DNSHeader do
 begin
 Qr := False; // False is a query; True is a response
 Opcode := 0; // 1 is an Iquery return <domainname>
 RD := True; // Request Recursive search
 QDCount := 1; // Just one Question
 end;
 DnsREsolver.DNSQDList.Clear;
 with DnsREsolver.DNSQDList.Add do // And the Question is ?
 begin
 if Length(DomainV) = 0 then
 results := 'Domain Not Given!'
 else
 QName := DomainV;
 QType := aQueryType;
 QClass := cIN;
 end;

 try
 DNSResolver.ResolveDNS;
 except
 On Exception do
 begin
 // Do exception handling
 results := 'DNS error!';
 end;
 end;
 GetMXrecord := FullResults;
 except
 end;
end; { ConnectBtnClick }

//**

function TMXlookerup.FullResults() :string;
var
 Idx: Integer;

begin { DisplayResults }
 with DNSResolver do
 begin
 if DnsAnList.Count > 0 then
 begin
 results := '';
 for Idx := 0 to DnsAnList.Count - 1 do
 begin
 DnsResource := DnsAnList[Idx];
 // Only interested in MX records
 if DnsResource.aType = cMx then
 results := results + DNsResource.Rdata.MX.Exchange + ', '
 end;
 end;
 end;
 FullResults := results;
end; { DisplayResults }

//**

end.

PAGE 114 OF 125

Verifyaddr.pas

unit verifyaddr;

interface

uses
 windows, messages, spin, SysUtils, Classes,
 IdBaseComponent, IdComponent, IdTCPConnection, IdTCPClient,
 IdTelnet, MXlookup, SyncObjs, DateUtils, QForms, IdWinsock,
 idException;

type
 TClientEvent = procedure of object; // Required for events.

 TVerifier = class
 private
 SMTPcon : TIdTelnet; // The SMTP connector
 MXlookup : TMXlookerup; // and MX record finder.

 FinishEvent : Tevent; // For event handling.

 ServerName : string; // Name of OUR DNS server 4 this program
 OurServerName: string; // Name of OUR server (this program).
 TOemail : string; // Address we are checking.
 FROMemail : string; // From address (can be bogus).
 MXser : string; // Mail server to 'talk' to.
 SMTPport : integer; // Port number. Normally 25.

 SMTPlineOn : integer; // Line on (commands sent).
 Communicating: boolean; // Started? Communicating? Finished?
 VRFYchecking : boolean; // Using the VRFY+EXPN SMTP commands?
 VRFYresult : integer; // The result of the VRFY command.
 EXPNresult : integer; // The result of the EXPN command.
 MaxAttempts : integer; // Maximum attempts to mail server
 MaxSecsWait : integer; // Maximum seconds wait from server
 CheckEveryMS : integer; // Check response every X Milliseconds

 // These are for formatting return details
 SendColour : string; // Holds colour for commands sending
 ResponseColour : string; // Holds colour for responses
 AppComments : string; // Holds colour for comments
 Newline : string; // Replaces CR/LF

 function AfterAT(email: string): string;
 function BeforeAT(email: string): string;
 function smtp2html(line: string; color: string): string;
 procedure SMTPsend(Command: string);
 procedure SMTPconOnDataAvailable(Buffer: string);
 procedure SMTPconConnected(Sender: TObject);
 procedure SMTPconConnect;
 procedure SMTPconDisconnect;
 public
 { Public declarations }
 SMTPtxt : string;
 errorcode : string;
 constructor Create();
 function Verified(): boolean;
 function Verify(Temail : string;
 Femail : string;
 VRFY : boolean): string;

PAGE 115 OF 125

 protected
 FOnFinished : TClientEvent;
 FOnErrorOccured : TClientEvent;
 published
 property SMTPportNo : integer read SMTPport
 write SMTPport;
 property Verifiying : boolean read Communicating;
 property MXserver : string read MXser;
 property Details : string read SMTPtxt;
 property ThisServersName: string read OurServerName
 write OurServerName;
 property DNSserver : string read ServerName
 write ServerName;
 property OnFinished : TClientEvent read FOnFinished
 write FOnFinished;
 property OnErrorOccured : TClientEvent read FOnErrorOccured
 write FOnErrorOccured;
 end;

//**

const
 MaxAttempts = 3;
 MaxSecsWait = 10;
 CheckEveryMS = 100;
 SendColour = '006600';
 ResponseColour = 'FF0000';
 AppComments = '666600';

implementation

//**

constructor TVerifier.create();
begin
 // Initialize and set defaults.
 mxlookup := TMXlookerup.create();
 SMTPcon := TIdTelnet.Create(Application);
 SMTPcon.OnDataAvailable := SMTPconOnDataAvailable;
 SMTPcon.OnConnect := SMTPconConnect;
 SMTPcon.OnConnected := SMTPconConnected;
 SMTPcon.OnDisconnect := SMTPconDisconnect;

 // initialize variables (in case not given any)
 ServerName := '192.168.0.99';
 OurServerName := 'VerifyServer';
 SMTPport := 25;
 Newline := '
';
 VRFYchecking := true;
 MaxAttempts := 3;
 MaxSecsWait := 10;
 CheckEveryMS := 100;
 SendColour := '006600';
 ResponseColour := 'FF0000';
 AppComments := '666600';
end;

//**

function TVerifier.smtp2html(line: string; color: string): string;

PAGE 116 OF 125

begin
 Line := stringreplace(line,'<','<', [rfReplaceAll]);
 Line := stringreplace(line,'>','>', [rfReplaceAll]);
 result :=
 ''+
 '<code>' + line + '</code>' + newline
end;

//**

function TVerifier.verify(Temail : string;
 Femail : string;
 VRFY : boolean):string;
var
 charat : integer; // Used to store '@' position in e-mail
 attempts : integer; // Connection attempts.
 waituntil : Tdatetime; // A Date/Time to wait for when
communicating.
 // (Over this and the app will
disconnect)
begin
 // Remember the e-mail addresses
 TOemail := Temail;
 FROMemail := Femail;
 VRFYchecking := VRFY;

 // Initialize variables.
 communicating := true;
 attempts := 0;
 errorCode := '';
 SMTPtxt := '';
 VRFYresult := 0;
 EXPNresult := 0;
 if VRFYchecking then
 SMTPlineOn := 10
 else
 SMTPlineOn := 0;

 // Go get the name of the MX mail server to 'talk' to.
 MXser := mxlookup.GetMXrecord(AfterAT(TOemail),
ServerName, 20000);

 mxlookup.Free; // Finished with. So remove from memory.

 // Use first MX record
 charat := Pos(',', MXser);
 charat := charat - 1;
 MXser := copy(MXser, 0, charat);

 if MXser <> '' then
 begin
 // Initialize telnet/SMTP connection.
 SMTPcon.Host := MXser;
 SMTPcon.port := smtpport;

 SMTPtxt := smtp2html('[Found MX server: ' + MXser +
']',AppComments);

 // Make a number of attempts to 'talk' to the mail server
//communicating

PAGE 117 OF 125

 while (attempts < MaxAttempts) and (Not smtpcon.Connected) do
 begin

 try
 SMTPcon.Connect; // Start connection.
 except
 on EIdSocketError do
 begin
 inc(attempts);
 SMTPtxt := SMTPtxt + newline + 'Socket connect error,
attempt: ' +
 inttostr(attempts);
 end;
 else
 begin
 // Do exception handling
 inc(attempts);
 SMTPtxt := SMTPtxt + newline + 'Cannot connect, attempt: '
+
 inttostr(attempts);
 end;
 end; // try
 end; // while

 if smtpcon.Connected then
 begin
 // Normally the "SMTPconOnDataAvailable" will now be
processing WHILE
 // this is executing! We now need to wait for it to finish
before returning
 // the result. Hence the following code.

 // Create an Event (Trigger)
 FinishEvent := TEvent.Create(Nil, True, False, 'Verifywait');

 // Set the Maximum wait time
 waituntil := IncSecond(now, MaxSecsWait);

 // While still 'talking' to mail server and not over maximum
wait time.
 while (communicating = true) AND (comparetime(waituntil, now)
= 1) do
 begin
 // Clear any calls to the event.
 FinishEvent.ResetEvent;

 // Wait (stop processing !!! until event is triggered)
 // Call in "SMTPconDisconnect"
 if FinishEvent.WaitFor(CheckEveryMS) <> wrSignaled then
 begin
 // Do nothing. CPU will be idle.
 // CPU Usage will be near 0% (NOT 100%. ike you may
think)
 // Its an interrupt not a loop!
 end;
 end;

 FinishEvent.free;

 try
 //SMTPcon.disconnect; // Make sure it disconnects.

PAGE 118 OF 125

 finally
 end;
 end;

 // Emtpy string if no error.
 if VRFYchecking then
 if errorcode = '' then
 begin
 if (VRFYresult = 250) or (EXPNresult = 250) then
 Result := errorcode
 else
 if (VRFYresult = 250) then
 Result := inttostr(EXPNresult)
 else
 Result := inttostr(VRFYresult);
 end
 else
 Result := errorcode
 else
 Result := errorcode;
 end
 else
 Result := '-1';

 If NOT SMTPcon.Connected then
 SMTPcon.Free;
end;

//**

function TVerifier.Verified(): boolean;
begin
 if ErrorCode = '' then
 result := true
 else
 result := false;
end;

//**

procedure TVerifier.SMTPsend(Command: string);
begin
 try
 if (communicating) and SMTPcon.connected then
 SMTPcon.WriteLn(Command);
 finally
 end;
end;

//**

function TVerifier.AfterAT(email: string): string;
var
 charat : integer;
begin
 charat := Pos('@', email);
 charat := charat + 1; // Move past the @ sign
 AfterAT := copy(TOemail, charat, length(email));
end;

//**

PAGE 119 OF 125

function TVerifier.BeforeAT(email: string): string;
var
 charat : integer;
begin
 charat := Pos('@', email);
 charat := charat - 1; // Move before the @ sign
 BeforeAT := copy(TOemail, 0, charat);
end;

//**

procedure TVerifier.SMTPconOnDataAvailable(Buffer: string);
const
 CR = #13;
 LF = #10;
var
 Start, Stop, ReturnCode: Integer;
 Command, returned: string;
begin
 try

 Start := 1;
 Stop := Pos(CR, Buffer);
 if Stop = 0 then
 Stop := Length(Buffer) + 1;

 // while there is data to process from server.
 while ((Start <= Length(Buffer)) and SMTPcon.connected) do
 begin
 // This is the returned data.
 returned := Copy(Buffer, Start, Stop - Start);

 // Get the response code, < 250 is good.
 val(Copy(Buffer, Start, 3),ReturnCode,ReturnCode);

 // Store the server response for later.
 SMTPtxt := SMTPtxt + smtp2html(returned, responsecolour);

 if SMTPlineOn = 12 then
 begin
 VRFYresult := ReturnCode;
 if ReturnCode = 250 then SMTPlineOn := 17 ;//SMTPlineOn + 1;
 end;
 if SMTPlineOn = 14 then
 begin
 EXPNresult := ReturnCode;
 if ReturnCode = 250 then SMTPlineOn := 17 ;//SMTPlineOn + 1;
 end;

 if (ReturnCode <= 250) or
 (SMTPlineOn = 12) or (SMTPlineOn = 13) or
 (SMTPlineOn = 14) or (SMTPlineOn = 15) then
 begin
 case SMTPlineOn of
 // Basic verification
 0: Command := 'HELO ' + ThisServersName; //HELO
 1: Command := 'MAIL FROM: <' + FROMemail + '>';
 2: Command := 'RCPT TO: <' + TOemail + '>';
 3: Command := 'quit';

PAGE 120 OF 125

 4: SMTPconDisconnect;

 // For verification when using VRFY/EXPN
 10: Command := 'EHLO ' + ThisServersName; //HELO
 11: Command := 'VRFY ' + TOemail; //+ BeforeAT(TOemail); '
 12: Command := 'RSET' + #13 + #11;//CRLF;
 13: Command := 'EXPN ' + BeforeAT(TOemail);
 14: Command := 'RSET' + #13 + #11;
 15: Command := 'MAIL FROM: <' + FROMemail + '>';
 16: Command := 'RCPT TO: <' + TOemail + '>';
 17: Command := 'quit';
 18: SMTPconDisconnect;
 19: Command := ''{nothing} ;
 else
 Command := '';
 SMTPtxt := SMTPtxt +
 smtp2html('[Error Loop failure!]', appcomments);
 end;

 // If no errors send another command.
 if Command <> '' then
 begin
 // Store request for later.
 SMTPtxt := SMTPtxt + smtp2html(command, sendcolour);

 SMTPsend(Command); // Send command to server.
 end;

 SMTPlineOn := SMTPlineOn + 1; // Move to next command.
 end
 else
 begin
 errorcode := inttostr(ReturnCode);
 // time to quit.
 SMTPtxt := SMTPtxt + smtp2html('[FAILED!]',appcomments);
 end;

 // This section is to 'handle' SMTP responses.

 Start := Stop + 1;
 if Start > Length(Buffer) then
 Break;
 if Buffer[Start] = LF then
 Start := Start + 1;
 Stop := Start;
 while (Buffer[Stop] <> CR) and (Stop <= Length(Buffer)) do
 Stop := Stop + 1;
 end;

 finally
 end;
end;

//**

procedure TVerifier.SMTPconConnected(Sender: TObject);
begin
 SMTPtxt := SMTPtxt + smtp2html('[Connected]',appcomments);
end;

//**

PAGE 121 OF 125

procedure TVerifier.SMTPconConnect;
begin
 SMTPtxt := SMTPtxt + smtp2html('[Connecting]',appcomments);
end;

//**

procedure TVerifier.SMTPconDisconnect;
begin
 SMTPtxt := SMTPtxt + smtp2html('[Disconnecting]',appcomments);

 //SMTPcon.DisconnectSocket;
 communicating := false;
end;

//**
{
destructor TVerifier.Destroy;
begin
 try
 SMTPcon.Free;
 finally
 inherited;
 end;
end; }

//**

end.

PAGE 122 OF 125

StringQueue.pas
unit StringQueue;
interface
uses
 classes, RegExpr, SysUtils;

type
 TStringQueue = class(TObject)

 private
 Data : TStrings;
 LowerTrigger : Integer; // To fire events
 HigherTrigger : Integer;
 Handled : integer;
 public
 constructor Create();
 destructor Kill();
 procedure Add(Element : string);
 function Remove(): string;
 procedure Flush();
 function Size(): integer;
 function IsEmpty(): boolean;
 protected
 FOnHigherTrigger : TNotifyEvent;
 FOnLowerTrigger : TNotifyEvent;
 FOnEmptyTrigger : TNotifyEvent;
 FOnNotEmptyTrigger : TNotifyEvent;
 published
 property StringsHandled : integer read Handled;
 property OnHigherTrigger: TNotifyEvent read FOnHigherTrigger
 write FOnHigherTrigger;
 property OnLowerTrigger : TNotifyEvent read FOnLowerTrigger
 write FOnLowerTrigger;
 property OnEmpty : TNotifyEvent read FOnEmptyTrigger
 write FOnEmptyTrigger;
 // execute whenever add/remove methods called and
 // the queue is not empty
 property OnNotEmpty : TNotifyEvent read FOnNotEmptyTrigger
 write FOnNotEmptyTrigger;
end;

function cstr(value : variant): string;
procedure Str2PlainTxt(var str : string);
procedure File2string(FileName : string; var Filecontent : string);
procedure GetFiles(APath: string; AExt: string; var AList: TStrings;
ARecurse: boolean; AShowDirs : boolean; var Status : string);

implementation

//**

procedure Str2PlainTxt(var str : string);
var
 i : Cardinal;
begin
 if str <> '' then
 for i := 0 to length(str) do
 begin
 if Not (((ord(str[i]) < 128) and (ord(str[i]) > 31)) or
 ((ord(str[i]) = 13) or (ord(str[i]) = 10))) then
 str[i] := chr(32);

PAGE 123 OF 125

 end;
end;

//**

function cstr(value : variant): string;
// Casts any data type (hopefully!) to a string type
var
 temp : string;
begin
 try
 temp := value;
 cstr := temp;
 except
 on E: Exception do
 cstr := '';
 //ErrorDialog(E.Message, E.HelpContext);
 end;
end;

//**

procedure File2string(FileName : string; var Filecontent : string);
var
 Stream : TMemoryStream;
begin
 Filecontent := '';
 if fileexists(Filename) then
 begin
 Stream := TMemoryStream.Create;
 try
 Stream.LoadFromFile(Filename);
 SetLength(Filecontent, Stream.Size);
 Stream.Read(Filecontent[1], Stream.Size)
 finally
 Stream.Free
 end
 end;
end;

//**

procedure GetFiles(APath: string; AExt: string; var AList: TStrings;
ARecurse: boolean; AShowDirs : boolean; var Status : string);
var
 theExt : string;
 searchRec : SysUtils.TSearchRec;
begin
 status := 'Searching : ' + APath;
 if APath[Length(APath)] <> '\' then
 APath := APath + '\';
 if AShowDirs then AList.AddObject(APath, Pointer(-1));
 if FindFirst(APath + '*.*', faAnyFile, searchRec) = 0 then repeat
 with searchRec do begin
 if (Name <> '.') and (Name <> '..') then
 if (Attr and faDirectory <= 0) then
 begin
 theExt := '*' + UpperCase(ExtractFileExt(searchRec.Name));
 if (AExt = '*.*') or (theExt = UpperCase(AExt)) then
 AList.AddObject(APath + searchRec.Name, Pointer(0))
 end

PAGE 124 OF 125

 else
 begin
 if ARecurse then
 GetFiles(APath + Name + '\', AExt, AList,
 ARecurse, AShowDirs, status);
 end;
 end; {with searchRec...}
 until FindNext(searchRec) <> 0;
 SysUtils.FindClose(searchRec);
end;

//**

constructor TStringQueue.Create();
begin
 Data := TStringList.Create;
 Handled := 0;
end;

//**

destructor TStringQueue.Kill();
begin
 Data.Destroy;
end;

//**

procedure TStringQueue.Flush();
begin
 Data.Clear;
 Handled := 0;
 if assigned (FonemptyTrigger) then
 FOnemptyTrigger(self);
end;

//**

procedure TStringQueue.Add(Element : string);
begin
 data.Add(Element);
 inc(Handled);
 // If higher trigger reached, fire the event.
 if highertrigger > 0 then
 if highertrigger = data.count then
 if assigned (Fonhighertrigger) then
 FOnHigherTrigger(self);
 // If not empty fire event.
 if data.count > 0 then
 if assigned(FOnNotEmptyTrigger) then
 FOnNotEmptyTrigger(self);
end;

//**

function TStringQueue.Remove(): string;
begin
 If data.count <> 0 then
 begin
 result := Data.Strings[0];
 Data.Delete(0);

PAGE 125 OF 125

 end
 else
 result := '';

 // If lower trigger reached, fire the event.
 if lowertrigger >= 0 then
 if lowertrigger = data.count then
 if assigned (Fonlowertrigger) then
 FOnlowerTrigger(self);

 // If empty, fire the event.
 if 0 = data.count then
 if assigned (FonemptyTrigger) then
 FOnemptyTrigger(self);
end;

//**

function TStringQueue.IsEmpty(): boolean;
begin
 result := (data.count = 0);
end;

//**

function TStringQueue.Size(): integer;
begin
 result := data.count;
end;

//**

end.

